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INVESTIGATION . OF A LIMIT. -9

1+ :%greater than 1+71‘and less than 1+;—1,'where n is put
for m + 1.

. 1\*.. 1\* 1\*

Then (1+— lies between (1+—> and (1+— .

Suppose x=m +a=n— /3, so that a and B are proper frac-
tions, then

1\*.. B e
(1 + —) lies between (1 + -) and (1 + —) ,
x n m
that is, between

[t Y e 21

If 2 be now supposed to increase without limit, so also do
m and n. The limit of (1+%) andof(1+7;—‘) is ¢, and as
1- g and 1 +7% have unity for their limit it follows that the
limit of (1 + l)z is e.
z
17. We may shew that the limit of \(l + i) is also e
when 2 is megative and increases without limit. For put

x=—2, then we have to find the limit of (}—-;):"when 2

increases without limit.
N\* /z-1\" z \
Now (1-;) —( = ) —(—_1),
. i+l
= (-.—1;;:'/) , where y=z-1,

i

Let now « increase numerically without limit, then z, and

. v
consequently y, do the same. The limit of (1 + ;) is e, and

that of 1+ 31/ is unity, and therefore the limit of (1 - %) ise.
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18. Since the fimit of (1 + 1). when 2 increases indefi-

mtely 18 ¢, we see, by puttmg — =z, that the limit of (1 + z)'
when z is diménished mdeﬁmtely is also 2 Hence we can

deduce the limit when z=0 of (1 +az) , Where @ is any
constant quantity. For

x 1)a
(1+a2)'= {(1 + az)"‘} .
Now as z dimimishes without limit, so also does az, therefore
the limit of (1+az)* is ¢,
and the Limit of (1+as)® i ¢
19. Since  log,(1+2)'=] log,(i+2),
a being any base, we have, by diminishing z indefinitely,
the Timit, of E=0+2) _ e limit of log, (1-+ 2)"

=log,e;
and, putting e for a,

the limit of l_"&(:ﬂ -1

20. From the equation

lOgc (1 + z);= loga (: +_2) )
we deduce, by assuming 1+ 2 =a",
St
log, (1 +z)'=“l‘1°

Now suppose z to diminish without limit, and therefore also v.
We have then

the limit of when v=0

= limit of log,(1+ z)—" when z=0
= log,e.
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Tn (1) put 8=, and raise both sides to the power 13

My
then
A
(1 + 7%'7) Tis greater than (1 + %)v;
that is, if & be greater than v,

(1 + %\)‘ is greater than (1 + '%)1 ............. (8).

From (3) we see that (1 +l)== continually increases as =
increases. It does not, however, pass beyond a certain finite
limit; for in (2) write E for B, and raise both sides to the
power «; then

(1 +i)w is less than i o be greater than 1.
7.
Hence, if we put y=2, we find that ( l) can never

exceed 4. By ascnbmg to «y greater values we shall obtain
a closer limit for (1 +2)- If we put y=6 we see that

z L}
(l +%) must be less than (g) , and therefore less than 3.
Since then the limit of (1 +£)¢, as @ becomes indefinitely
great, must lie between (1+1) and (n%l)" where n has

any positive value, we may, by ascribing successive integral
values to n, easily approximate to the numerical value of the

fimit.
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CHAPTER III.

DIFFERENTIAL COEFFICIENTS OF SIMPLE FUNCTIONS.

44. Differential coefficient of & where n is a positive
tnteger.

Let y =z", therefore
:'/+Ay= ((D-;-h)',
therefore Ay=(z+h)"—2"
=nz""h + %ﬁ R 4. + R
Ay _ i, n(n—1)
therefore A nx"" 4 YR

Diminish 2 without limit, and we have

L h+ .o+ 7

a—i =nx*?

45. The same result may also be obtained by means of
Art. 30. For let

U=Y Ygeee Yns

where the n quantities y,, ¥,, ... ¥,, are all functions of z;
we have then

1du 1dy, , 1dy 1 dy,
S _ 2By % ol
udz y, d:c+y,d.'c Foe Y, dz’
If now y, =z, we have
Ay, = Ax,
therefore A_y! =1,
Az
dy
therefore =1,
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Put then y,, 9, ... ¥, all equal to z; thus u becomes z",
and we obtain

1du_n
ude z’
therefore % = nz™%,

46. Ifn be not a positive integer, we may by assuming
the truth of the Binomial Theorem for fractional exponents

% . But in that case we
shall require to assume that “if we have a series containing
an infinite number of terms and each term becomes ulti-
mately indefinitely small, the sum of the terms becomes so
too.” To avoid this assumption we adopt another mode.

47. Differential coefficient of «* the exponent n being un-
restricted.

Let y=2", therefore
y+Ay=(z+h)",

Ay (z+h)-a"
therefore YoV Sy wa—

z+ h\*
=f§:§2—:.

proceed as in Art. 44 to determine

Now whatever be the value of n, positive or negative, whole
or fractional, it may be supposed =£:—q , Where p, ¢, r, are

positive integers.
' Let z+h_ 2,
x
therefore h=z(z-1),
and ﬁ—i =" f:ll .
As h diminishes indefinitely z approaches 1the limit 1, and we
-

have to find in that case the limit of 1
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: a
Suppose v =2", then

rq

z'—lorz;—l_v"’—l_ v — !
z—1  2z—-1 =1 (-1
_ P =1—(s"—1)

= TR

I Al T b Gk e o i TS 2 )
(T + v+ 4+ 1) ’

This last result is obtained by dividing both numerator and
denominator of the preceding fraction by v—1. Let now v
approach the limit 1, then the limit of the last fraction is

P—q
r

therefore c_i._y =P =9 1 .
dz r

48. Differential coefficient of «". Second method.
Let y=2a", therefore
y+ay=(z+h),

Ay (z+h)—2"
Az h

" h\"
= F{(HE) —1}.
Assume i—t =z and (1+ 2)"—1=1, then z and v are quantities

which diminish indefinitely with A. Thus

Ay _ m?
Az z

therefore

From the above assumptions
(1+2)"=1+v,
therefore log, (1 +v) =nlog,(1 + 2).
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From Art. 19 the expressions
log,(1 4 2) and log, (1 +v)
z v

both tend to the limit unity. Hence we may assume

log, (1 +v) —14
v ?’
log,(l+z) 143,

where each of the quantities ¢ and & has zero for its limit.
Hence

143 log,(1+9)
1+9'log,(1+2)
=n1+8

149

v
z

from above;

therefore the limit of Yis n, and
dy

d—w—m:

49. Differential coefficient of a”.
Let y=a® therefore
y+Ay=a""*=a%"

Ay  ,ad* -1
therefore A= a* 7
h—
Now, by Art. 20, the limit of il A 1 , when & is indefinitely
diminished is log,a ; therefore
% = a”log,a.

Next let y =a*; then
=(a)";
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hence by the rule just proved

Z—% = (a%)* log, a*

= a*¢log, a.
Hence if y = ¢,
%=ce“; '
andif y=e"
dy _
=

50. Differential coefficient of log, z.
Let y =1log,z, therefore
y+Ay=log, (z+4),

therefore Ay =log, (x + k) —log, =
—log &F k.
= 10g, x )
log, z+h
. Ay ™ z
therefore AT

Assume % = xz, therefore
Ay _1log,(1+2)
Az z :

By Art, 19 the limit of 8(%2) when » diminishes
indefinitely is log, e, therefore
1
do ™ 5 18

=1
" a'log,a’
Hence if y=1log,z

=1
=

B
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51. Differential coefficient of sin .
Let y =sina, therefore
y+Ay=sin (z+4),
therefore Ay =sin (z + &) —sina

R\ . & . .
=2 cos (z + 5) sin o, by Trigonometry,

sin —

Ay _ l‘) 2
therefore Ap= cos (:c + 2 T .
2
sin —
Now when & is indefinitely diminished, the limit of 72
is unity by Art. 9, therefore , 3
dy
7 =08 .

52. Differential coefficvent of cos .
Let y=cos z, therefore
Y+ Ay =cos (z+ &),

therefore Ay =cos (z+ k) —cosx
. R\ . h
= — 28I (a;+§) sm§,
sin h
Ay . h) 2
therefore Ay = —sin (a: +3 T,
2
therefore _ % = —sin 2.

53. Differential coefficient of tan z.
Let y =tana, therefore
y+ Ay =tan (z+ k),
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therefore Ay =tan (z+h)—tanz
_sin(z+4k) sinz
T cos(x+h) cosz

_ sin(@+h—a) sin A
" cos(@+h)cosx cos (x+ k) cosz’
Ay sink 1
therefore Az h cos(z+h)cosz’
dy 1
therefore P cog’ o

54. Differential coefficient of cot z.
By proceeding as in the last Example, we find that if
y=cot gz,
dy 1

dz sin’z’
55. Differential coefficient of sec .
Let y=seca, therefore

¥+ Ay =sec (z+h),
therefore =~ Ay=sec (z+4k)—secx

_ 1 _ 1 _cosz—cos(z+h)
“cos(@+h) cosz coszcos (x+h)
2 sin w+}—") in®
2 ( 5)sing

cos z:cos (z + k) ;

. h) .k
sin (a: +-) sin=
therefore — = 2 2
) Az coszcos(x+h) h ’
Py

dy sinz
therefore do = con"
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56. Differential coefficient of cosec z.

Let y =coseca; proceed as in the last example, and we
find
dy _ coszx

v dx sina’

57. Since tanz, cot z, secz, and cosec « are all fractional
forms, we may deduce the differential coefficient of each of
these functions by Art. 31 from those of sin 2 and cos .
Thus, let

sin z

=tanzx =
y cosx’

dsinz . dcoszx

cosz —sinx
dx
therefore =2 = dz - , Art. 31,
dz cos’
8 s 2 '
. =w, Arts. 51 and 52,
cos'
_ 1
" cos’z’

Similarly we may proceed with cot 2, secz, and cosec .

Since vers z=1—cosx, the differential coefficient of versz
by Arts. 27 and 33

= — differential coefficient of cos

=gin .

T.D.C. D
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Hence 2+ A=Y (Y+AY) ceeeriernnnnnns (4).
From (1) and (3)
Ay_¢e+lad—d@ . 5).
Az Az
From (2) and (4) A
A_‘”=‘I’(3/+A?/)""l"(y) . ()
Ay Ay e .

In (5) and (6) the same symbols have the same values, and

Ay A
since in that case Ax Ay =1, we have

$atAn)-d(@) Y+ -¥@)_
Ax Ay

Now diminish Az and Ay without limit, and we have

¢ (@) x ¥ () =1;

or, as it may be written,
dy dx =1

dz dy

61. The demonstration given in the last Article may
appear laborious. In reviewing it, the student will perceive
that this arises from the necessity of proving that the =, g,
Az, and Ay, which occur in (5), have the same numerscal
values as the quantities denoted by the same symbols respec-
tively in (6). This point is sometimes assumed, and 1t is
considered sufficient to say “since %/ x 2—y =1 always, we

have, by proceeding to the limit, 3 g:ﬁ;= 1,” but it would

appear necessary at least that the assumption should be
noticed.

62. Suppose z=¢ (),
y=(2)

so that y is a function of 2, and z a function of . It follows
that if we substitute for 2 its value in 4 (z), we make y an









OF THE INVERSE TRIGONOMETRICAL FUNCTIONS. . 39

66. Differential coeffictent of cos™z.
Let y =cos™a, therefore

cos y =,
therefore (l_'c=_ siny, Art. 52,
dy y’ o ¢ ]
therefore @ — ——, Art. 60,
dz  sin y
-
Nl-a')"
See the preceding Article.

67. Differential coefficient of tan™z and cot™ .
Let y=tan™z, therefore
x=tany,

dx Art. 53,

therefore 237 p os’ 7’

therefore % =cos'y, Art. 60,

1
“I+ttan'y
=1
142"
Similarly, if y=cot™z,
dy__ 1
de” 1+
68. Differential coefficient of sec™x and cosec™z.
Let y=sec™x, therefore

x=secy,

therefore g‘f Art. 55,
y  cos’ y

therefore ﬂ = m Art. 60.

de siny’
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" But sec y =2, therefdte cos y——'fi, and siny=.‘\_/_(f;—_l),
see Art. 65, thus

dy__ 1

dx i (@-1)"
Similarly, if y = cosec ',

dy 1

de~  zy(@=1)"

69. In the manner given in the preceding Articles the
differential coefficients of the inverse trigonometrical functions
are usually determined. They may however be found without
using Art. 60.

For example, suppose
y=tan"z,
therefore ~ y+Ay=tan™(z+ k),
therefore Ay =tan™ (xz+ k) —tanz
13
— -1
= TR’

1, . 3
7 ten 1+z(z+h)

by Trigonometry,

therefore -ﬁ—: =
) 3
-1
- 1 tan 14z (x+ k)
1+ +ah’ ) :
1+z(z+4)
Now let %2 diminish without limit, then

the limit of

therefore =TI
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70. Again,suppose y =sin 'z,
therefore y-+Ay=sin™(z+A4),
therefore Ay =sgin" (z + k) —sin'z
= sin (@ -+ k) v (1- 29 — o/ (1 (o+ B}Y],
by Trigonometry,
A_,, sn{fo + 1) Y1 =) 2 1= G B,

therefore
put (a:+h) V1 —-2)— au/{l— (:v+h) } =z for abbreviation,
: Ay _sin” 'z sin'z z
then v S S
Now z_(z+h) V(1 —2) —zV{l1—(z+h)}
h h
(+h)(1—2)—a'{1—(z+h)}
TR VA=a)rz/1-@+A)]]
_ 2x+h .
=GR V=2 tav(i- @t i)
thus the limit of %, when A =0, is:“/(f_w or (lf-
g
and the limit of =2 is 1, Art. 21; therefore
dy 1
&= Vi-2)"

71. Differential coefficient of vers™ .
Let y=vers™x, therefore

vers y=a, -
therefore l—cosy=u,
therefore de_ sin
Ol dy = Y
dy 1 1 1
therefore dz” smy WO—cos'y) W{l—(l—2a)}
1

V=)
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(8) If y=2" where both # and v are functions of «, then
by Art. 72

dy (dv vdz
= (@ lowe %){

74. Differential coefficient of «". Third method. For
the other methods see Arts.*47 and 48.
The differential coefficient of z* is sometimes found thus:

First prove as in Art. 44 or 45 that if » be a positive
integer, the differential coefficient of 4™ is na™".

If then n be fractional and positive, suppose it =§ where
p and g are positive integers.

Let y=a"= a;f,
~ therefore Y =ar,
Hence taking the differential coefficients of both sides

93/”3—1 =pz",

theref G_prz__P
eretore, dz gy ¢ Zew
— 2 m'qg"’ =nz*?
q

The rule is thus established so long as n is positive.
If n be negative suppose it = —m, so that m is positive.
Let y=a™, therefore

1

~ =g
y
therefore 1=ya™
Differentiate both sides, and we have
0=z" %+ymx"“, Arts. 29 and 33,
dy my P—
therefore p bk

=ng*",
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Hence the rule for differentiating z* is universally esta-
blished. '

75. We shall now give some examples of the preceding
rules for finding differential coefficients.

(1) Let y=sinaz. e
Put ax =z ; therefore y =sinz,
dy _dy dz

and = ds d’ Art. ¢3.
But : %‘Z =cosz, Art. 51,
and L a, Art. 33,
, . dx
therefore iy— =@ COS Z =@ COS a.
dz

(2) Let y =sin (log ).
By log x without any base specified, we mean log,z.

Put logz =2,
therefore y=sing,
dy _dy dz .
and dw 2, Art. 63,
But 3; = cos z, Art. 51,
"dz
iz =z , Art. 50,
therefore dy _cosz _ cos (logz) .
. dr = x
(8) y=log (sinz).
Put sin =z,
therefore y=loge,
dy _dy dz
and s = ds I’ Art. 63
1 cosz
=-cosx =—-——=cot z
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(4) y=log ot zz
a+bz _
Put a—bz 2>
dz _b(a—bx) +b(a+ba)
therefore g @ —ba)° , Art. 31,
_ 2ab
T (a—bx)*’
therefore dy 1 2ab 20]’

z @a—ba) @bz
This example may also be solved by putting
y =log (a + bz) — log (a — bz),

b b 2ab
therefore %— atbz otz d—ba"
(5) y=cos™ i ; 2 .
Put 4 ;,3# =2z,
therefore y=cos™'z,
dy dy dz
and i
Now dy S Art. 66,
- dz vya=2g> ="
1 .

"J{l_(4;%3?=4@°—9x‘+2w—16);

3
S g

& &

_3(a-9)

) ’
&
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dy _ z 3 (x'—4)
therefore de J(@*—92'+ 242" —16)" &
_ -8@-9 3
N {(@ —1) (" —4)7} zN(x'—-1)"
In differentiating 4 ;?z’ we made use of the rule for

finding the differential coefficient of a fraction. By putting
the expression in.the form

4 8
@ z’
that is, 427 - 327,

we obtain for the differential coefficient
— 1227 4 327 Art. 47,
8(a*—4)

— , as above.
x

or
It may be observed that cases of this kind frequently occur
1n which we may adopt more than one method. The student
will find it very useful in rendering him familiar with the
rules, to obtain his results, if possible, by different methods.

© y=vizeddl

It is often convenient to take the logarithms of both sides of
an equation before differentiating., Thus, from the above,
we have

log y =% {log a +log & + log (x — 3a) —log (x — 4a)}.

Take the differential coefficient of each member of the equa-
tion, therefore

ldy_1(1, 1 1)
y dx 2{:1: r—3a a;—-4a}
o' — 8az + 12a°

" 2z (z—3a) (z—4a)’
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dy _ «a. (z'—8az+12d")
dx 2.{:1: (x—3a)} (= — 4a)}

therefore

"
(1) y=tan™—.

Put Z =2, therefore y=tan~z,
a

dy 1 dz
therefore it
_ 1 1 __g@a
1 +_?’ a ad+2
a
oy Bd'z—2
(8) Let y=tan™ s
Put _3zd’ - =z; therefore y=tan™'z
a(@-3") '’ ’
By _dyds 1 dz
and GG i+Pd
dz _ 3 (a’'—2") (o’ — 32%) + 6z (3za’ —2’)
Now &= (@32 .
_3(a*+2a'2"+2")
T a(@*-32%)
And by reduction we find that
1 _a'(a’—32%°
d1+22  (@+2)
dy 3a
Therefore ol prapes B
In fact we have from Trigonometry
4 3d'z—a aZ
tan a___—(a’—&c’) =3 tan o’

3

and therefore the value of % ought to be @

, Art. 31,

7
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It is obvious that other self-verifying examples may be
constructed on the model of this example.

e e’cosa:)
(9) y=tau (1+e“sinw :

€”cos x
Fut Tesms
thus y=tan™z,
dy 1 dz
therefore - ii7ds
Now dz _ (¢"cosz—e"sinz) (1+€°sina)—e”cosz (¢°cosz+¢”sin z)
dz (1+ € sina)?
_ € (cosz—sinz—¢”)
(1+¢€°sinz)*
1 (1+€sinz)’
and 142" 1+4+26°sinz -+’
dy _ € (cos z —sin x — €7)
therefore do= 1120smat o™
(10) y=sinztan™za”logz.
dy 4. sinza®log
d—;—coswtan za 10g$+—1+—w,,—
3 -l 2
+sinz tan™'z a” loga log z + smxta% . Art. 30.

76. The differential coefficients of the simple functions are
here collected for the sake -of reference.

y=a" é_!{ =na"",
dy 1
y=log.z ds " zloga’

dy _
y=a’ d—x—a"log.a.
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x
=vers?-,
y a

T.D.C.

dy 1 =z
d—z—-ac‘)s"—z.
dy 1. =
dz~ "a"a"
ay _1 .o
dz  a a’
%=—-cosec‘—.
o &
ay_17a
dz—acos’f.
dy 1 o8-
dz~ a_ &’
sin’
dy 1
dz~ \J(a*—2*)
dy _ 1
dz~  W(a"—2)
dy _a
de o' +2*°
dy a
dz~ o+
dy _ a
dz z(@—d)°
Y____ &
de a(@-ad)°
dy_ 1
&= V@az —2)"

49
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EXAMPLES.
d,
1 y=cvz. Ez:éc—z
_a—-z dy a
2 y=7 =7
3 g=1t% dy 1-2z—2a'
Y=ixz" =~ (l+a)r
4 y=czlogz. g—"é=l+logz.
dy 2
5. y=Ilogcotanax. o= " smom
6 y=—rZ . dy__ a'
BRAR(CETN o~ @
a,’ dy &'
7. y—(l-—w’)" d“’—(l—a;’)’.
8. y=e(l—2). Yo (1-322-2).

9. y=(x—3)e”+4xe"+2+3.
%:(2m—5)e”+4(w+1)e’+l.
10, y=(Q2z-5)e*+4(z+1)e"+1.

dy _ -
%-43’{(.'0 2) € +x +2}.

1. y= (g) Yen (z)"{l +log ”;”} :

» d mn-l

x
12. y=m. dz (1+z).ﬂ.




13.

14.

16.

17.
18.
19.
20.

21.

23.
24. y=
25. y=

26.
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_€—€”
I=Fre

y=log (¢ +e™).

y=2'(a+2)*(b—-2)"

dy___4
de = (€+e7)*
dy e—e”

de e€+e*’

B _ (2ab - (60~ 58) o~ 92} & (@ +2)" (b~ o)’

=(a+2)" (b +2)"

%= (@+8)™ b +2)* (m (b+2) + n (a+2)).

-1 1
Y=@ta  o+a
tan®z

y= 3 —tanz+ .

1
Y e vi—a)

y=("+2) tan"z.

y=y/(a+2+2).

y=log {log (a + bz*)}.

y=logtan ( 1+ 2)
&' gin 7.

Vie+=)
va+wz'

y_J(l +a:)

m (b+z)+n(a+x)
T ettt

I
o+
I
wm
8

z—y(1—2
Vi—-a)(1+2zyI-a)}

=2ztan? T 4 a.
a

1 . bz +2c

A& e BHE HME e

%=e‘””’{2 (@ +2) sinz +cosz}. -

dy_ _ Wa(Wz—+a)
dz 2«/w~/(a+w)(«/a+ V)’
dy

N(l= ”’) (1-2)°

2



52

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

EXAMPLES OF DIFFERENTIAL COEFFICIENTS.

dy _
y= {(1+w’)’} dz
y= ez_
(a- NeE+x+2
(- 1) )
dy _

dz~ (-

-2z (2—°)
-2t (1+a;')—i

l).{(ac —-3)é*+4ze + 2+ 8.

1 V(1 +2) +y/(1 —2) dy 1
y 10g5/(1+a:)—-4/(1—.'c)° &= " Zya=a"
y=lori -2 Lenfory-a Lol
={—= U dy__ my
y_{1+~/(1—x’)}’ de zy(1—-2)°
=_Z { z }"
y N1=2) 1+y/(1 =29} "

@={ z }“1+n4/(l—a:’)

de |14+ V(1= 2% Q-

1

= VT dy
Yy=a . = @ _z‘)*loo.a,.
= g dy sec’a;' 1
y=tana®. G e log,a.a®.
y=loglv(1+e) +y(1-2t). 21 {1 - W}—_w')} ,
= (2a* + ) W (at + 2d). dy _ dad + 323
y=(2a%+ %) ¥/ (a* + 2%) de ™ syay@+al)’




39.

46.

47.
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N+ +/A=2)  dy 2 {H_'l__}
SirA—vi-a)  d 2 tva-a)-

4 dy x
y=asm . dx—sm x+4/(l—x’)'

_ —1 ‘_l},{ o can? -1 tanz
y=tanztan"x. d,v—seca:tan w+1+w,._
y = sin nz (sin z)". % =n (sin )" "sin (n+1)a..

_ (sinnx)™ dy _ mn (sin nz)™" cos (max — n:v)

~ (cosma)*” dr (cos ma)™**

y = e ¥* cosrzr. ‘% =— ¢ (2a*wcosrz +r sinrz).

" z—sinz
y " (sinz)®

iJ‘Z—sin:z: {1 \/(1 )} 3 (® —sin™x) cosa:-

dr™— (sinz)*
a+btanZ ' ‘
y:log _2 . i’l= ab
z dz  , & .4 ..
a—btan§ a’® cos E_b sin’ 5
y=". dy_ =" (1+ log z).
dx
_ 1  dy a;s (1—1log z)
y=x. d-—w-==————-——wx .
= ot dy _ g (sin’z  logz }
y=a dz =™ { x +V(1—w’) ’
- dy _
y—&‘" ) d—;—f@’.

= dy _
y =" =¢ 2* (1 + log ).
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53.

54.

55.

56.

57,
58.
59.
60.
61.
62.
63,
64.
65.

66.

EXAMPLES OF DIFFERENTIAL COEFFICIENTS,

d 1

y=a" %=yz~' {5+logw+ (loga:)’}.
e dy _ 1+zlogz
y==. d—;—x"e‘_x—.

e 2% dy 2(1—2"
y=tan i de 1+ 6z*+a*

_eaz+l dy _ 1

Y=8R U dn Nl—2z—%)"

_. 'dy_—isecg/(l—a: P

tan— % W1

Y=t s de = Y-

= tan™ dy____n___
y=tan™ (n tan z). dz  cos*z +nisin’z’

=0 ——— dy_ !

I=RE e dz™ Y@= )"
- @ By
y—(w+a)tan",\/(—l—J(ax). c—h—;—ta.n ‘\/a'
Y. z—a\} dy _ 2as
y=tan 5+log(w+a)' dz a*—a*’

y =sin,/(sinz). gg =1%,/(1+ cosec z).
e 22 dy 2

y=tan - 1+a"
y=sin—= 4y _ @ (b— o) —

b+ca* dz J{b+(2bc—af)a'+cx'} btod
T R ' dy _ wsin”'z
y=+(1—-2"sin"z— 2z, ‘h——m.
zsinz dy sin’'z

y=m+l°g’\/(l"“”>° d‘;-m.
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67. y=tan™{z+y/(1-2")}. %: 5 «/(l—is)l{—lfi;?f-?ﬂ'
G8. y=sin";/a—(%?%j. %=(i*til;'a'4/(a’—::’sec'a) .
69. y=sin® \/ (Z;—_%) %= (b’fi’()b:/?agz R
ooy-wt /iTa) Er
R
R B S

- Lat—1 dy 2nz™ |

73. y=cos T p il T

74. y=sec“27,l—_—l. %=—ﬁ.
CRPR (G R e
SYPRTEVES SORLLIE W)
77. Ifu=§logy—,(yjy—l_z_’l—:/l-§tan’lg%—;1,

where . g=dltist3d)

shew that du 1

dz " zy(l+a)
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. n+l . nz

sin  sin =

78. Given sinz+sin2z+...+sinnw= - >
8in-2'

deduce, by taking the differential coefficients of both sides,
the sum of
cosx +2 cos2x+ ... +n cos nx.

n——+lsinfsin2n+1a; -l-(sinn+l )’
Bosult, 2 2 2 2 2 )
sin® =
2

79. Having given (see Plane Trigonometry, Chap. XXIIL)

sin mx
7"+“’)=W,

' sinwsin(zfi-x) sin (2_7r +z) ... IR (m
m m m

where m is a positive integer, shew that

cot z + cot (E +a:)+ ...+cot(m'—1
m m

7r+a:)=mootma:.

80. From the preceding result deduce that

. cosec® z + cosec® (I + :v) + ... + cosec? (m
m m

1r+a:)

= m? cosec’ mz.
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The successive differential coefficients of a function are
often conveniently denoted by accents on the function.
Thus, if ¢ (z) be any function of z, then ¢’ (z), ¢" (z), ¢ (z),
g"(w), ...... denote the first, second, third, fourth, ......

ifferential coefficients of ¢(x) with respect to a.

78. In some cases the n® differential coefficient of a
function admits of a simple algebraical expression. For
example, suppose

y=sinz;

therefore Z—Z = cos & = sin (a: + "2_') ,

dsin (@ + —
dy _ ( ) T
= 7 = cos (:v + 5)
—in (o+22),
3,
80 Z?f=sin(z+3-2lr),
d” . n
and generally 7o =sin (a: + _2_)
So also, if y = sin ax,

zl—'y;=a"sin(aw +-n—;)

In like manner, if
=cos x,

nmw
=cos(a:+ -2*),

=a" cos (az+%’-r) .

Bl 8¢ o

and if  y=cosax,
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79. Supposee y=a’;
therefore % =a"log a,
% =a” (loga)’,
. and % =a" (log a)".
Similarly, if y=e, % =aqa"e*,
If ' y=loga,
% =—g"
%’ =2z
. —1 (1)1
and Z—é{‘ = L’L%_L s

where | n—1 stands for 1.2.3 ... (n —1).

80. Differential coefficient of the product of two functions.

Suppose . u=yz,
where y and 2 are functions of «; we have
du dy
dz -y R

Differentiating both sides of the equation with respect to
x, we have
dw_ d'z dyd:z dyds d_’g
BV alt dt &t
d2  dydz  d%

=Ygt g ot aa
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Similarly
duw_ d’2 dydz  dydz _d'ydz d'ydz  dy
WVt e e de T b do T 2 dt 2P"
&Pz, dydz  Pyds dy
Yt T L

So far, then, as we have proceeded, the numerical coeffi-
cients follow the same law as those of the Binomial Theorem.
We may prove by the method of Induction that such will
always be the case. For assume

du_ d'z, dyd'z n(n—1)dydz

& Vi T " ed™ T e dwder

+n('n— 1)...(n—r+1)dyd ™z

|z dx’ da™"
n(n—1)...(n—7)d™My &'z
[r+1 dz™ dx" ™

_Differentiate both sides with respect to z: then
du  d™z dydz  dydz, dyd'z

d—ﬁ=yw+a};d—$n+n%%+ nma?i+...
nn—1)...(n—r+1) d_'gd""’z_*_dlyé_""z}
|_7.- {dxf dxﬂﬂl dzﬂl dw‘—f

n (n —A l) . (n. - r) {drﬂy a2 d'"y dn+lz}

d'y

+ +ont gz ees(1).

+

+

[r+1 dz P dz*™ " da™ da"
Codtydz Ay,
L JU @).

Rearranging the terms, we have
d’l‘l’l d’lﬂ d dﬂ
(l—w?u' =yd?§+(n+1)3gza;+
(n+Dn...(n+1—1)d"y d7z
[r+1 da™ da*~"

dlﬂ
Foe +dz—.§{z ceeeeen(3).

+
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Now the series (3) follows the same law as (1). Hence
if for any value of n the formula in (1) is true, it is true
also for the next greater value of n. But we have proved
that it holds when n=3; therefore it holds when n=4,
therefore when n=35, and so on ; that is, it is universally true.

This theorem is called after the name of its discoverer,
Leibnitz.

81.. If u=e* cos ba: we have by Arts 78 and 80,

d. n—-1 7'.) n(n— ) ",—g 9 2'"'
= e“‘{a cosba:-i-nba cos(b:c+§ 132 (/) cos(bw+?)

Foieenn +b"cos(ba:+ 1;—")}

We may also find another form for this »® differential
ooeﬁic1ent as follows:

Z; ‘“'(acosb:c —bsinbx);

assume a =1 cos ¢,
b=rsin ¢,

so that r=(a'+8Y4,

thus % =re* cos (bx + ¢)

where r and ¢ are constant quantities.

Similarly % = rew (o cos (b2 + ¢) —b sin. (b0 + )}

=1"¢* cos (bz + 2¢),
and generally
d"e™* cos ba: "
= r"¢* cos (bx +ng).

82. The following is an important example of Art. 80.
Let u=e"y;

then, remembering that %= a"e**, we have

” l-ld =1 '
By St B,
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(a + d%)”-'/,

be expanded by the Binomial Theorem, and the symbols

(%) 2 (a%)’y, (éiw)’y,

replaced by
dy dy dy
dx > d@’ ) dxﬂ ?
the result will be the same as the series in parentheses in (1).

If now the expression

... respectively,

Hence, we may write

d:gﬂﬁ =% (a + (—Z—c)'y ...................... (2),

as a convenient abbreviated method of stating the equation (1).

83. The following theorem is sometimes of use in the
higher branches of mathematics.

If n be any positive integer
v d"wv a (u dv) 40 (n=1) d™* ( d’v)

Y@~ dr " \Ydm) T 1.2 dr\Vde
SRR 5 N ()

This theorem may be readily established by Induction.
For it is obviously true when n=1, and if we assume it to
be true for a specific value of » we can shew that it will be
true when n is changed into n+1. Assume that (1) is true
and differentiate both sides; thus

d™'u @.dﬁ_d""uv_ni dv)+n(n—l) a? dl)
Vit L dr . d dx"(“?.?a 1.2 “dz-*(

Yz
e, +(- 1)*%@%) ...... e (2).
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Also since the theorem is supposed to hold for the value n
dv

we have from (1), by changing » into '

L8505 D 5D
— rereerenen, +(=1)u z—;—z ......... ).,

Now suppose the right-hand members of (2) and (3) written
so that the first term of (3) is immediately under the second
term of (2), the second term of (3) under the third term of (2),
and so on. Then by subtracting we have

d*'u _ d"uv a/ dv\ (+Dnd s d
v et (0 ) Ty e (v )
duﬂ
— i +(-1)"u da:"f‘ .

This shews that if the theorem is true for a specific value
of n it is also true when n is changed into n+1. Therefore
since it i8 true when n=1 it is universally true.

EXAMPLES.

dy _ cosz

2. Lety:sin'z=w%ﬂ?;,

-dy 3. mr)__". ( 111_;')
then E=Ism(w+? sin ( 3z + 2 )"

R nle

glle gi

3. Ify=a'loge,

4. Ify=2’logz,

|

R §l&
8

= 1z
5. If y=(2*+a") tan 2 )

—~
0
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d‘
6. If y=€e"cosz, dz‘+4y 0.

- /(= dy__ 3
A= e &

8. Ify={o+y@—1J, (z’fl)dz.+md—y—n'y—0.

dz
- dy _lnzl
9. Ify=2a""loga, dw" -
_1-=a d"y 2(=1)%
10. Ify—-m, =“U+va
11. Ifu,=("+€7)", %=n’u,—4n(n-l) Uy oo
' d’y 24z— 1 '
="
12. Ify=e'vs, d:z:’ vz
_ dly 24
13. Ify—m, ixg—m.
14. If y* =sec2az, y+%=3y‘.
dy 1+43z+4*
15. If(1+ 1-z+a")? —_—
(1+2%)=(1-z+2?)}, T

_azx+b dy_("']) l_ b+ac b—ac
16. Hy=2r—% &~ % {(z-—c""—(a:+c)"ﬁ}'
17. If y=a"sinz,

g-f,{=[§{sinw+¥zsin(w+1r)+n(?11)a?sin(w4-%’-r)

_l_ﬂ(”_[i_)_("_?)_af sin (z+§2qf)+--"} .

303
18. Ify tan™Z,

dy o y
then d_a:—a’+z’—c°8’7z’
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8,
hence Z——;,V=—§cosgsing;l——i
1. 2ydy
=—-sin—
(2y 'rr) .Y
=-cos (== +—)cos" =,
a 2 a
- d%_2 /3
Shew that —w,=‘;,cos(7i—/+2.g)cos’§,
dy_|n=1 (ry -y
and generally tha Tor = g C08 {—a—+(n—1) }cos .
AZ_T_ —!‘_‘_Z"_
Now tan ==3 o™ 0 suppose ;
" 4 am1) T} = sin (" 4+ ") = sin (w7 —
thus cos{a+(n 1)2} sm(a+2) sin (nr — nf)
=(~1)"'sinnf; and cos*?= ———a——,,,
(@42
. -1
therefore 37‘1,{=a( 1)""-—11’L—;,.sin nd.
(a|+4w!)?
19. Since
dtan™Z ™ tan™ (‘1’)
a a

A ) =1 A
dx  ad'+a'’ dx* (a"+a;” Ta  dz*™
Hence, shew that
a 1 ) (~1)*|nsin (n+1) 0
(a x*

a -
d \&+ c(@ ey

where tan0=2.
&£
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The n* differential coefficient of ——— + ——— with respect to x

is sometimes obtained thus:

1 1 1 = 1 }
@+t 2a4/(—1) {a:-——a«/(—l) z+ay(-1))’
therefore

a1 )_ (—D"L[ 1 a 1
dz" (a'-i-w’ " 2a4/(-1) Liz—ad=EDP T fmtay (=D
Now assume z=r cosf, a=r sinf, so that
r’=qa’+2* and tan0=g.
Then {x+a~/(— 1)}*** =7+"* {cos 6 + /(- 1) sin 6}**"*

™ {cos (n+1) 0 + 4/(— 1) sin (n+ 1) 6}
by De Moivre’s Theorem.

Hence
1 1 _24(=1} sm(n+1)0
fe=avEO T ey ™

and we.obtain the same result as before for the proposed n*™
differential coefficient.

d'«?j?wd"(i%’)mdﬂg;‘:_—%”’i). Art, 80

20.

Hence, by means of the preceding Example, shew that

a z ) (=1)"|ncos(n+1)6
da" (a"+a:" - (a’+:v')”’+—l )

We may also proceed in the second manner indicated for
the preceding Example, starting with

x 1 1 1
w53 rreve *ameve}-
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21. Find the 4* differential coefficient of 1 and of e ;1'

Results

22 32
es“lze,ill;f 4% and 6B {160 144574 80027 12027
22. d“l(ia;’a) {&*c" + 2nxc™ +n (n—1) ¢} o,

where ¢=loga. Art. 80.
23. If y =sin (msin™ ), shew that
(1-a" —-xj‘y——m .
Apply Leibnitz’s theorem, Art. 80, and deduce
dnﬂ duﬂ
(1-2" dz—’z= (2n+1) zd-sz + (n* — m®) a—{g
24. If y=a cos (log z) + b sin (log ), shew that
Yy LW
55 a2, ty=0

dﬁ
snd that &* g4+ (2n+ 1):cdz,,ﬂ+(n +1)d—;’1=

F2
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For put z+h=2z
In the first case
df@+B)_df (@) ds
de  ~ dz ‘dx
=f"(2), since & _ 1

dz
In the second case,

df @+h) _df () ds
dh dz "dh

=f"(2), since d- =1

fSZ. To expand f(z+h) in a series of ascending powers
o
Assume (Art. 85) that

S@+h)=A,+ Ah+ AR+ AR+ ......... (1),
where 4,, 4,, 4,, ..., do not contain A.
Then
d%) dAo+hd4;+;=dA=+}"zA ...... @)

and -‘]f(””—"'h) = A, 2ADABAR F ereereeerrerneen (O)

By Art. 86, the series (2) and (3) must be equal. Hence,
equating the ‘coefficients of like powers of &, we have

_dAo

I_E’
g ld4,_ 1 a4,
T2 dz 1.2 do*°
1d4 1 d4

And by putting 2=0 in (1), we find
4,=f ().















74 : MACLAURIN'S THEOREM.

We may, if we please, change h into #, and since the
quantities £(0), £ (0), ...... f"(0), do not contain # or %, no
change is made in any of them : hence

20, 2™

Sl) =f(0) + (vf' (0) + ..+ |_"_ + @f'ﬂ(ez).

‘When the last term, by taking n large enough, can be
made as small as we please, we have for f(x) an infinite series
proceeding according to powers of @ This series is usually
called Maclaurin's, having been published by him in 1742;
though, as it had been given a few years previously by Stir-
ling, 1t sometimes bears the name of the latter.

96. Assuming that any function of z can be expanded in
a series of positive integral powers of «, the following method
has been given for proving Maclaurin’s Theorem.

Let fl@)=4,+dz+ A2 +...... + A2+ ......
where A, A, A,...do not contain z.
Differentiate successively, then
f@=4+24z+...+nd " +.....
fx)=24,+234z+...+n(n—1) 42" +......
S (@) =234+ ...+ n(n—1) (n—2) 42" +......
Now suppose =0 in each of these equations, we have
4,=1(0),
4,=1'(0),
4,=1-7"(0),

1 14
Ay= 153" O)

eeseerscesccsnce

Substitute the values of 4,, 4,,... and we obtain
@) =10 +zf(0) +l‘i£ F7(0) + . +’im )+ ...
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Fla+32) —Fla+2a) F'(a+22)
fla+3)—s(a+2a) —f' (@+ 2a)

....................................

+ 8’

Fla+h—F@a+h—a) F(a+h—a) +

fath—flath—a)  flath-—a) ™"

where g, §, ... g, all diminish without limit when a does so.
Since the fraction in (2) always lies between the greatest

and least of the series

F'(a) F'(a + a) F'(a+24)

F@tP Farat™” Farem TS
F'(a+h—a)
..................... :f,(aTh?a—) +}l',

it must lie between the greatest and least limits towards
which these tend; that is, it must lie between the greatest and
least values which ;T%:—)) can assume between a and a+ k.
But as F——, (:) , in passing from its greatest to its least value
passes through all intermediate values, there must be some
proper fraction 6, such that

Fla+14)—F(a) _F'(a+0h)

fla+h)—fla) f(a+0h)

101. Suppose f(z) =x—a; therefore f'(x)=1.

The conditions required to be satisfied by f(z) in the
enunciation of Art. 98 are satisfied. And as f(a+ %) =4,
and f(a) =0,
we have F(a+k)— F(a) =kF'(a+ 6R).

This simple case of Art. 98 might of course be proved in
‘the same manner as the general proposition was established.

102. The result of Art. 101 may be applied to shew
that an expression ‘ndependent of z is the only one of which
the differential coefficient with respect to « is always zero.
For suppose F(z) a function, such that F(z) is always zero;
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ble, and that all the differential coefficients up to the #* in-
clusive vanish when z=a; we have by Art. 106,

hﬂ"‘l
ln+1
Suppose. =0 and. F'(a) =0, then

F(a+h) — F(a) =— F™ (a+ 0k).

F)= % F™ (6%).

108. Application io Taylor’s Theorem.

Let ¢ (x+£%) be a function which is to be expanded in
a series of ascending positive integral powers of 2. Let

Bt R = (@)= b @) = [ 8(@) =~ 4 (@) = PO

Then F(k) and its differential coefficients with respect to A,
up to the n* inclusive, vanish when A=0. Also

F* (h) = ¢™ (z+ F).
Hence, by the last equation of Art. 107,
kﬂ‘l‘l + hﬂ'fl N
F(#) =@F" (0")=lm¢ * (z + Oh),
and therefore

Peth =@ +I @+ @+t Lo

}‘!ﬂ-l
a1 ¢ @+ 0.

+

From this Taylor's Theorem follows whenever the func-
tion is such that, by sufficiently increasing n, the term

kn-l»l
|n,+1 ¢m (@+ 0h)

can be made as small as we please.
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109. The following proof of Taylor's Theorem deserves
notice, as it depends only on the equation which is proved
geometrically in Art. 103. Let

() (o) (o) — B g oy (=)
4O =p@ =99 @)~ ¢ @~ =)

be called F'(z), then F” (z) =— l_””) ().

Now, by Art. 103, F(x)=F (2) + (x—2) F' {z + 6 (x - 2)}.
Also F(2)=0,

and F{z+0(w—z)}=—0nLl:sv)¢“‘{z+9(w 2)};

therefore ¢ (2) —¢ (@) — (z—2z) ¢’ (x) — (z a:) ¢" () —

e (Z l__x) ¢" ()

Put % for z—=, then
, B e
e +N = (@) i @+ 58 @+t L8
n41 B -
LA
ln
110. The result of the preceding. Article gives us an
expresgion for the remainder after n+ 1 terms of the expansion
of ¢ (x+h), differing in form from that we found before. If
we assume @=1— 6,, the remainder becomes
(1 0 )ﬁk’ﬂ-l
3

111. In the proofs given of Taylor’s Theorem, we have
supposed all the functions that occur to be continuous. If
the function we wish to expand, or any of its differentiai
coefficients up to the (n + 1) inclusive, be infinite for values

G2

¢™ (@ + h— ).

o™ (z + 6,7).
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MISCELLANEOUS EXAMPLES.

MISCELLANEOUS EXAMPLES.

_ o+ bz dy 1
1. Ify=tan b'-_aw, (_E:l'l'—w:.
2. Ify=wtan"£, %'_;mﬂ}:_l:w*'
1 V(@ + &)+ (@ + D)
3. Ify-log\/(m,_*a,)_v(w,_‘_b,),
dy _ 2
dz N(2'+a) /(@*+6%)°
4 If NI —ah)e * —af)et e dy ze 't J(l-a)—z
ek V= =2+’ do” JA-a) W(I-2)+ap
sin s dy _ y(@cosz—sinz) ex
5. Ity= ( ) ! de sin®z log Gna
6. I/ =(52)" . £ 0=freg+ 57 (5)
s 2 a - 'y
7. y=Y{lx-a)(@-0)}, y m—i(‘%ﬁ—-(:)_w

8 Ifa= acosB+bsm0 and y=asin§—>dcosb, then

~7 7 — —am TG 18 independent of 0.

9. If cos™ o= log (%’) , then

daﬁ+(ﬂn+l)wﬁﬂ+2n d.', =0,

10. Shew that (x—2) ¢*+ 2z + 2 is positive for all positive
values of .
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CHAPTER VII.
 EXAMPLES OF EXPANSION OF FUNCTIONS.

114. WE shall first apply the formula of the preceding
Chapter to expand certain functions.

Required the expansion of (1 +2)", m not being assumed
to be a positive integer.

If JS@)=@0+2)",
we have f'(z) =m (1+ )™,
[ @)=mm-1)(1+2)""

ffR)=mm—=1)...(m—n+1)(14+2)"™,
@ =m@m—1)...( m—n)(1+a)"™";
hence  f(0)=1, fFf(0)=m, [f"(0)=m(@m-1),...
Therefore, by Art. 95,

" m(m—1) m(m—l) (m—n+1)
(1+2)"=1+mz +—l— 4.+ [ s

+[%m(mjl) oo (= ) (1 4 62)™,

If « be less than 1 the last term can be made as small as
we please by sufficiently increasing #, and in that case the
infinite series

m (m —1)
2

can, by takm% a sufficient number of terms, be brought as
near as we please to (1 +z)".

14me+ ...
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115. Let f(&@)=a"
By Arts. 95 and 79, we ha.ve

o —l-l-a;loga+l2 (log a)* + .. +‘ (10ga)"

a2 gse (log a)--u'

+= [n+1 ’

Hence, .changing a to ¢, and remembering that loge =1,
x’ u+1 ecg

e=1+o+ +L+ +Z +|n+l

nﬂ

G
The term T—— (EES may be made as small as we please by

sufficiently increasing n. Hence we obtain an infinite series
for €%, namely, ;

a? a:’
=14+ -
l_ Bt
Put =1, and we have
-
e=14+14—-+:—
E B l_+

This series may be used for calculating the approximate
value of ¢, and we may shew from it that e must be an tn+
commensurable number. See Plane Tngommetry, Chap. Xx.

It is found that e =2-718281828..

116. Let S (x).=sina.
By Arts. 95 and 78,

sinz= +z‘
- l§_ |_5- ......

=¥\ 7

Similarly cosz =1~ 5 +E_

, +Eéos(nw) L"; (n+]7r+0a:)
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In Arts. 115 and 116, the student will see that the last
term can be made as small as we please, whatever be the
value of z, if n be taken large enough.

117. Let J@)=log(1 +=);
therefore f'(z)= and S 0=1

f”(%)— (1+$)’ a.ndf"(O)——l

---------------------------

®06000c000c0c00ssccs LEXTL TS

therefore, by Art. 95,

w: (_ l)u—l .
gt T, %

( )- i+l
tTar) @+

.
log(1+2)=a—7+

In this series, if we suppose z positive and not greater

than unity, then, as (ﬁ)- can not be greater than unity,

1\
the error we commit, if we stop at the term -(—1)”—"0. , 1s

not greater than ;%; that is, the error can be made as

small as we please by increasing » sufficiently.
If we change the sign of z, we have
log(1—2)=~z-%-%—..—% cal
B—2) ==z =y T T Gr D) (=G

which does not give a very convenient form to the remainder.
But by Art. 110, we may also write

B z, a? x, (l a)l nt+l
log(l—z -——z—?—?—...—? (l ox)u+l ’
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- w’ 2$3 9.’3
Fence ¢€log(l+a)= z+l——é+ E+ —L_5-+
This may be verified by multiplying the expansion for ¢
by that for log (1 + x).

119. Methods of expansion of more or less rigour are
often adopted in special cases of which we will proceed to
give examples. We do not lay any stress upon them as
exact investigations, but they may serve as exercises in dif-
ferentiation.

Exp;md tan™x in powers of .
Assume tanTz=A4 +Ax+A42+... .+ 42"+ ........ (1).
Differentiate both sides with respect to =,

1 ]

then H—z,=A,+2A,a:+..q+n4,,z“ Tk (2).
1 — 2 .8 s_

But 1+a,’—1—w +x a:'+x ................... (3),

by simple division, or by the binomial theorem.

Equating coefficients of like powers of # in (2) and (3),
we have ’ _

A,=1, 4,=0, 4,=—1}, 4,=0,...
and putting =0 in (1), we get 4,=0; therefore
& & o

v, _, & & o
tan'z =z 3+5 7+...

This example may also be easily treated by the rigorous
method already used in Arts. 114...117. It appears from
Erample 18, page 65, that the n'® differential coefficient of

_ ta™z with respect to x is

prim=1 In.“—l sin (LW—’. —-n tan":c) .
(1+29)°




92 . EXPANSION OF FUNCTIONS.

Hence we have

. 3 5 "
tan™'z =az—§- +=;—:-— +% (- 1)““sinn?7r
) n . ntl
+ (1) w51 Sin {(n +21) L. (n+1) tan"Oz} .
(n+1)(1 + 6" *

And if  be numerically less than 1, the last term can be
made as small as we please by sufficiently increasing n; so
that the infinite series
2 2 o
*-gtyTT ,
can by taking a sufficient number of terms be brought as near
as we please to tan™x.

+ ...

120. Expand sin™'z in powers of z.
Assume sin'z=A4 4+ dz+ A2+ ... + 42"+ ... (1),
Differentiate both sides; thus '

.—1 ‘ - 2 n-'l
Vi—2) =4, +24x+ gzjsz +ot+nd 2+ L (2).

1 ., 1.3 ., 135, ‘
But = 1 Hie gt g e s ®),

by the Binomial Theorem.

Hence, comparing- the coefficients in (2) and (3), we de-
termine 4, A4,, ..., and putting z =0 in (1) we get 4,=0.
Substituting in (1), we have

It should be remarked that there are two considerations
which limit the generality of this investigation. We take
1
v (1—x
radical ought strictly to have the double sign: see Art. 65.
And we take sin”'« to vanish with «, whereas we know, by
Trigonometry, that sin™ = might be any multiple of 7 when

« vanishes. Co

as the differential coefficient of sin™x, whereas the
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Similar remarks apply to the expansions in the next two
Articles,

121. Expand ¢**"'# in powers of z.

Put P = g (1),
o a
then = e, 92),
Nil—Z ),. @
Y _ osnrie 07 QLI 3) -
= ,.+(1_w,)§t ............ 3);
therefore 1- z’) 3—, -z ZZ =@Yeirriiinnens ).

Assume y=A,+Az+ A+ A5 +...+ A2+ ...(5);
therefore %:Al.’-?Ax‘z_'_."_l_nA”mﬂ—l_*_“.

'y -
- = 24 - A
e 4, +...+nn-1) 42"+

Substitute these values of , %, and % , in (4), then equate

the coefficients of like powers of z on both sides, and we
obtain
_ a2+ nﬂ
T (n+1)(n+2)
Equation (6) will enable us to determine 4,, 4,, 4,, ... as
snon as we know 4, and 4,.

But 4, is the value of y or ¢**""'* when # =0, and

4, is the value of g'% or s 2 when &=0;

V(-2
therefore 4 =1, and 4,=a.

Hence, by (6),
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@d+1 , (@+1a

4i="3 4= 3’
:;.1:!':;:6118.“”“—1’ l1+azx+— o'z’ + a’(a’ + 1) 2+ ’(a/ + 22) 2
L2 K 3

+al@+ D@8y

LE
Since e* =1+ gsinz +|_ (sin'x)® +

we have, by equating the coefficients of @ in this series, and
in the result just found,

liﬁ
w8,

+..

MIH

N 5
sin x=x+ 3+ 1

N)

as already found.
Also equating the coeﬂiments of a', we have
o2 42 ‘)2 42 6’ ’
(e =" + et 5 T g 6.7

And equating the coefficients of a® we have

(sinz) =2’ +IE3’(1+ ) l|:33’ 5’(1+ +5,):v

+...

122. Expand sin (m sin”z) in powers of .
Putting y for the function, we may shew that

Proceeding as in Art. 121, we find that
(n+1) (n+2)4,,= (n"—m*) 4,; and thus
. cay_mo m(P=m') o m(1'=m’) (3"—m") ,
sin (m sin w)—1m+ 3 z®+ B ..
Similarly cos (m sin™'z)
mt (2= m) ,_mi(e ) (=)

-1-fpe- T s
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123. Expand Fi—f in powers of .

‘We shall first shew that no odd power of # except the first
can occur in the expansion. Denote the function by ¢ (x).

Then $@)=-¢(2) =27
_ = zd _z(1—¢€)
“e-itice -1~ ©

This shews that no odd power of 2z except the first can occur
in ¢ (z); for every odd power of # which occurs in ¢ (x) must
also occur in ¢ (z) — ¢ (— ).

We have ¢ (z) (¢°—1) =«; therefore €°¢p (z) =z + ¢ ().

Differentiate successively with respect to z; thus

€{¢'@) +¢ @)} =1+¢(2),

& {¢" () +2¢'(2) + ¢ (2)} = ¢" (),

€ (" (2) +3¢" (@) + 3¢ (2) + $ (@)} = ¢" (),

e {¢" (@) + 44" (@) + 64" (@) + 44 (z) + ¢ ()} = ¢"" (),
and so on.

Put £ =0 in these equations; thus
$(0)=1,
26/(0) +$(0) =0,
3¢ (0) +3¢'(0) + ¢ (0) =0,
44" (0) + 64" (0) + 44/ (0) + ¢ (0) =0,

and so on.
Hence we find in succession

\ FO==5 ¢ O =5 $"0) =0, $”(0) == 35.-..

It is usual to denote the expansion thus:

z__ B, -Bs. «, Bs o 27 e. .
m‘—l—iﬁ-{-éz’-l—z.ﬁ +l——§:w—l_8‘$ + ...

the coefficients B,, B,, B,, B,, ... are called the numbers of
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Bernoullt, having been first noticed by James Bemoulh. It
will be found that

—
.

Ot
.

NS

10.

11.

1 1 1 5
'Bl—ar Bg""3—0, -Bs—ﬁr -B7=%; BD—"gé:"-
EXAMPLES. -

If €*(8 —a) —4ze® —xz— 3 be Sxpanded by Maclaurin's

. z
Theorem, the first term 1s — -—|_5— .

Expand log (1+ €7) in powers of z. .
Result. log2+ g e

’ 3

P[4

+ ..

_ Expand 2% in powers of 2.

4
Result. 14+ 2°+ % + eee

22*

e’”secx=1+w+w"'+—,—+...

14¢7\" nx  n(n+1)2?
(2 >‘1+ T2

N +4z+122") =14 20+ 42"+ ...
—r\R __ 7; 1" 2 37&2—'271 4
(€+e)" =2 {l+|_2_:z; +_B_ 4.0
ne' n(3n—2)a* n{15(n—-1"+1}2°
cosx)'=1——+ -
o =" e* T e
+ ...

]69: 16 x 172°

—logcosa:—L_ L LG T+

g — { 4a: _812° }
NEMTIN

sin™ (#+ &) =sin"'z + ,lk = (lfz’)lf
1+22° B 3z(3+22%) A

taiB - A
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12. log(l— z+x=)__w+“°'+2‘" +4_?5_'.,,
2 0 33_1 a2 1.82°
13. log{z+#(d +w)}_1°g“+a 5371;4‘5-.—‘5‘;5—
14, log(l+sinw)=z—%2+§...
oy ® T T
15. & Idotoy—e—gr -

16. For what values of 2 does Taylor's Theorem fail, if
*/((x— a)” (x—b)"°

y= Bk and which is the first dlfferentlal

coefficient that becomes infinite ?

17. Shew that
. '
tan"(w+h)=tan"x+ksm0—-’~; sin*d sin 26
8
% sin®d sin 36 — é— sin*d sin 40 + ..
where 9=7§r —tan'z. See Example 18 of Chapter V.

18. By putting 2= —= in Example 17, shew that
cos’d sin 20 = cos®@ sin 30
2 T 3

cos* 4 sin 46
4

'L;-a=sinaoos0+

19. By puttingh=—=x —é in Example 17, shew that

T _ sin @ &in260 + sm30 sin 46 ‘.
2 cos@  2cos’d  3cos 0 4 cos'd

20. By putting h=—4/(1+2") in Example 17, shew that

1 . 1. 1. 1.
5(7-0)==Vsm0+§sm20+§sm30+zsm40+...

T.D.C. H
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CHAPTER VIIL

SUCCESSIVE DIFFERENTIATION. DIFFERENTIATION OF A
FUNCTION OF TWO VARIABLES.

124. WE have, in Art. 77, defined the second differential
coefficient of a function to be the differential coefficient of the
differential coefficient of that function. The differential
coefficient of the second differential coefficient has been called
the third differential coefficient, and so on. We are now
about to give another view of these successive differential -
coefficients.

125. Let y=f(z),
y+8y=f(z+h),
therefore Ay =f(z+k)—f ().

In the right-hand member of the last equation change « into
x4 h and subtract the original value; we thus obtain

f@r2h) —flet+h)—{fl@+h)-f@)
or S @+ 2k) —2f (= + k) +f ().

This result, agreeably to our previous notation, may be’
denoted by A(Ay), which we abbreviate into A%. Hence

A’y =f(x + 2h) — 2f (z + &) + f ().
Similarly A (A%) or A’y will be equal to
Sf@+3k)—2f(@+2k)+f(x+h)
= {f(@+2k) - 2f (= + A) +f (@)},
that is, A’y =f(z+ 3k) — 3f (@ + 2k) + 3f (z + &) — f(z).
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Now, by Art. 92, A
P+ B)=F"@) + 1™ @) + - (a4 0B)
Y (x+k) = (z) + h\]r'(x +6.%),
therefore

Au+ hnﬂfuﬂ (Z) + h»ﬂ {%‘f"”(m'*' oh) +1I' (KB + 0 Il)}
=R (@) + R (@) e (2).

Equation (2) shews us that, granting the truth of (1), we
can deduce for A™'y a value of the same form as that we
assumed for A". But Art. 127 gives for A’y an expression
of the assumed form ; hence A’ has the same form, and so
also has A'y, and generally Aty.

From equation (1), by dividing both sides by 2" and then
diminishing % indefinitely, we bhave

the limit of (":_"9)7; £ @);

!
is d"

that is, the limit of Ay y

t @ay

129. Hiiherto we have only considered functions of one
independent variable; that is, we have supposed in the e
tion y=f(x), although quantltles denoted by such sym ls
as a, b, ... might occur in f (), yet they were not susceptible
of any cha.nge Suppose now we have the equation

u=2"+2y+ 9y,
and let y denote some constant quantity and z a variable,
we have

du
a— =2£+y.

From the same equation, if & be a constant quantity and -=y
a variable, we obtain
du

a§—2y+w

Of course we cannot simultaneously consider = both come—x
stant and variable; but there will be no inconsistency if 1
one occasion and for one urpose we consider  constarwm.
and on another occasion am{) for another purpose we conmd. -
it variable,
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" and by differentiating %" with respect to = we obtain

. ,qu
Co_dy_2-y
&= @+ )
Thus we see that in this example '
du du
Tiy‘-=7dx_ Sednesssssssisenene sevesvese see (1)’
or, as we may write it, :
d'u du
W -— W ooooooooooooooooooooooooooooo . (2)5

We shall prove in the next Article that this result is
universally true. Of the two modes of writing the result
given in (1) and (2) the second is the more commodious, but
1t has the disadvantage of making the theorem which we
have to prove appear obvious to the student, because it sug-
.gests to him that he is merely comparing two fractions. But
as we have already remarked, a symbol for a differential
coefficient is defined as a whole, and is not to be decomposed
into a numerator and a denominator. See Arts. 26 and 77.

134. If u be any function of the independent variables x

and y,
dd_u dé’i
_dv_ _dy o
dy = dx * ! . .

Let u= ¢ (z, ) ; change « into z+ A, then by Art. 92,
du B .
$@+hy)=9@y)+h+5 ¢ @+0hy);

we may therefore write p .
¢(z+h,y)—¢(x,y)=hd—g+h'v ............. (1),

where v is a certain function of z and ¥, which remains finite
when 2=0. In (1) write y +k for y; then the left-hand
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‘member becomes ¢(.'c+h, ¥+ k) ¢ (z, y+k); by Art. 92

d
dz “ becomes Z:+ k rn + k'8, where 8 remains finite when

k=0; and v beeomes v+ ka, where a is a quantity which re-
mains finite when %= 0, for it tends to v as its limit. Thus

dy
du
b@+h y+k)—¢ (2, y+k) = hd“+hkdd—"‘+lzk=8
y dy
N RN ).

Subtract (1) from (2) ; thus
$athy+B)—¢@+hy)—$(@y+H+é@2)
du
d__..
iy —d“'”-’+ Kka+ hE8.

Divide by A%, and thcn suppose k and % to diminish inde-
finitely ; therefore

du

-Tl‘;—'c = the limit when % and % vanish of
pEthy+th)-d@+hy)—d(=y+h+é(ny)
hk

In a similar way, by first changing g into y+k, and after-

du

d —_—
toards z into z + h, we can prove that 7;1:_ is also equal to

the above limit. ¢

du du

Hence T——dx .
d’l35 :Ii',he object of the preceding Article is to prove that
% %
T i d ; this is done by shewing that each of these

quantities is equal to the limit of a certain expression. It is
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157. If u be a function of the three independent variabl
, ¥, 2, we have in a similar manner

du, _ du
dydz  dzdy’
du _ du
drdz dzdx’' .
du _ d'u
dedy — dydx’
du d*u du

' dzdydz daxdzdy  dzdwdy’
and so on.

EXAMPLES.

d*u and d'u
dx dy dy dz’

1 Fu=Y_, find
a —2

2. Verify in the following cases the equation
du _ du
dedy dydx’
u=xsiny+ysinz,
w=2xlogy,
u=2a,

u = log tan

§ 1=

_ay—=be
=by—ac’

u=1ylog (1+ xy).
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3. If u=Aa*y" + BaPyF + Cavy” +...

where at+od =B+B =q+y=..=n
' d du
shew that R +_/dy_-nu

In this exa.mple 0 is called .a homogeneous function of n
dimensions.

4 If u be a homogeneous function of n dimensions,
shew that

d’ ' du d*u d*un
dz'+yd d == gty =r-Ug
5 If u be a homooeneous function of n dimensions,
shew that

Pu . du V
m’d.v’+2yda:d +y*dy, n(n—1)u.
. 6. Verify the theorems in Examples 3 and 4 in the follow-
Ing cases :
= (z+y)",
=%y
u=_ 7’
=@+ ).
7. If u=2a'' +y’P +2"y's, shew that
du .
TP dyds 6eyz" + 8yz.

8. If u=e", shev;r that -

I‘vg’m =(1+ 3.'cyz+m’y z’)e""

S. Ifu= y~/(a—a.’)+a:~/(a—_1/)shewthat
dy g,

4
\

d*u a
dz g +~"“ —ZW (@' -y) (d.cd,l/) = V@ —AHV@ =)
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— tanl zy
10. If u=tan Nyt shew that
d*u 1 d'u 15zy
dzdy~ (1+@+y)0 @y (Q+@+5)F

11. If u=a4/(a*— )/ (@' —2") +y4/(a’—2") 4/ (a*— 2"
+z4/(a'—2%) /(a*— y) —ay2

shew that d
~ V(@ =) V(a*~ ) W(a~ z’)dxdyd, V@ —2) 7,

=~/(a’—y")aj=~/(a’—z’)%.

12, If u=log (&’ +y*+ 2" — 3zyz), shew that
1 du_ ldudude_ .

6dzdydz 3dedydz °

du du du_ 3

de " dy dz x+y+z’

du  du d’u d’u u d’u

oyt myt e Gt i &
-_—
(@+y+2)”
d’u +_§"u + v 360
L dXdy*ds " daPdy’dz ' de*dy’ds  (w+y+2)*
du du  du 3
Pl v Rl = R FE v L
d®u +__d'u + du 12
defdydz * daedy®dz " dadyds® (z+y+2)*”
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CHAPTER IX.

LAGRANGE'S THEOREM AND LAPLACKE'S THEOREM.

138. SUPPOSE Y=2+ZPY) ceerrrenrrnninnnnnnnn(1),

where z and z are independent, and it is required to expand
f(y) according to ascending powers of z. Put u for f(y),
then, by Maclaurin's theorem, we have

- du, o d'u, 2 dy,

vEnt e Y12 dr T B da

du, d'u, du du
where u,, H?vg’ EZ{’?’ ... denote the values of «, T da
when z is put = 0 after differentiation. We proceed to trans-
form these differential coefficients of » with respect to x into
a more convenient form in order to ascertain their values
when 2=0. We shall first shew that

4 {F(v) %’} -4 {F @) %} ............... @),

supposing that » is any function of the independent quantities
« and z, and F'(v) any function of ».

To establish (2) we need only observe that the left-hand
member is
dv dv

, d
- F (v)%%-i-li’(v) Tmds
and the right-hand member is

' dv dv
E O

and these two expressions are equal by Art. 134.
From (1) we have

Bog ) +at 0L,

7 .
+F() dz :i)a;;
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therefore
Also

therefore
Hence -
Also
therefore

Hence

Again

du _du dy and % du dy
d.’l: d dz dy dz,

LAGRANGE'S THEOREM.
dy _ d> _d@)
d:.c — .'l:¢ (Z/)

d ’
d—i’=1+w¢ 0%,

- dy 1

&I )
dy
=bG)

__=¢(y)3‘£ ........ SR

Er TIOR8

Y

I

dz @) ()= } since u=lf(.,

I

§~"& ﬁ"I&. %[g_,

&@f@ Woy ),

=

(y)l’d“} by (3).

—t—
‘6-

,_A.—\

d”u &

Sdzdz {4’ (l'l)l dz}

: dzda;{ ld} by Art. 134,

K5 {m dﬁ} by (2),

P Wi'd—'; by (3).
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s“ppoée, according to this law, that
a a? ndi
a_:; = {95 @l 3;} ;

dnﬂ Jl }

then T = ma 1P

- dzﬁ: = {ﬂ" g“} by Art. 134,
dz" 1@ } by (2),
=Ii_z“{mm z}"

which shews us that the expression for Zw"" follows the same

law as that for du Hence, since the law has been proved

dzﬂ
to hold for % and ﬁ, it holds universally.
In Z% we are to make z=0 after the differentiation has

dz"
bee a*u
n performed ; but when we transform —— pt by the above

formula, into ‘an expression involving only differential co-
efficients taken with respect to z, we may put #=0 before the
dlﬁ'erentlatmn since z is to be considered as a constant in
differentiating with respect to z. When =0,

y=s2
¢ @) =4(2)
therefore i—% = %(L) =f'(2),
=) f (o)

s Tu=1 fpors (:)}

..........................

T.D.C.
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and thus .

FO=F Q)+ ab(F 6) + 5 3 (PO )]
+f s parr e}

» dﬂ n o1
 TTO +éd—;ﬂ’:"{m f (Z)}-l-...
This result is called Lagrange’s Theorem.

139. Suppose y=F{z+z¢p (y)};
required the expansion of f(y) in powers of .

Let ¢ stand for 2+ 2¢(y) ; then
11y BY
T =0 5,

therefore L=

_aF dt .
Also Ez‘dtdz‘m{“’““’/)z;}’

therefore =

~ d; d;
Hence. d%:«ﬁ(y)-—y .
hFrom this, in the same way as in Art. 138, we deduct
that '

dw d* QU
&= & {‘W d_} '
where u=f(y).
If we make #=0 in the equation

y=Fiz+zd ()}
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de Calcul Différentiel, 18me Legon, and Liouville’s Journal
de Mathématiques, tom. XI. p. 129 and 313,

142. If z=a+ y¢ (z), we have by Lagrange’s Theorem
r@=f@+yp@r @ +L L s o}

@ (s
+y|_’;%2 {‘P(m)lsf (.’L‘)} + ..
where in the coefficients of the different powers of y, we are

to make z = a after the differentiations have been performed.
Let y or —a2 = (), so that x=a is a root of yr (x) =0;

z-a
¢ (@)
- @e=d] , @) d 10
1 (= :v—a] ¥ (2)}? [ ' () (z—a)*
re=f@++e| LGS B & B
+ ...

where, in the coefficients of the different powers of Y () after
the differentiations,  is to be made = a. This series for £ (z)
in powers of 4 () is called Burmann’s Theorem.

143. Let 4+ "'(x) denote the inverse function of yr(z), so that
if u=+r(x) we have ¥ ' (u) ==, and therefore Yr{yr *(u)} = u.
If we write ' for « in Burmann’s Theorem, we have

f @)= fla+a [LOE=D] 2 L[ G

X JACTIL AN
BdeL (y@F

No change is made in the quantities in the square brackets,

for they do not contain = when the operations indicated are

completely performed.
If f(u) =wu, we have
t(z) = z—al 2 d[(z—a)
we-are [ 5] | o)
@ & [(@—a
MEY [{«xrw] i
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and if a =0, so that ¥ () vanishes with z,
SYRUUN 2 B2
¥ =255+ s g

AT

EXAMPLES.

1. Given y=2z+ a¢", expand y in powers of .
Here oy =¢,
f@=y;

-1

d.-l n Lot dn ns n=1 _ns
therefore E‘;ﬁ_"{mf (z)}:aﬁe =n""¢"

3 3 n
Thus y=2+ 26" + = 26" + > 3‘e"+...+% O

2z 1B L

2. Giveny=z+£vy’2;1, expand y in powers of z.

Horo o)=L

f@)=y;
therefore (ﬁ:{m‘f’ (z)}:%j%ﬂ(z’—l)“.
Hence y=z+w% (2'—1)+é:.2l,g;(z’—l)’+...
1 d*!

+|—'7_|'.2_“d7_—1(z'—1).+".

3. Given zy—logy=0, expand y in powers of . From
the given equation '

therefore yz = we™
tay y =ad.
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If then we put z=0 in the result of the first Example, W%
deduce - -

=z+d+ = 3+ =0
Y=ot Got ety

restore yz for ' and divide by #; then

zu-l
y= 1+z+l_3+ +I_l ...
4 If y= m, expand %* in ascendmg powemm—Ts
of z.
Since y= — .,
1+4/(1—2")
we have oyl -a)=z—y;
therefore YAl—a)=a"— 22y 4+ ceerriinanns (1),
and y= a_v+z:z.
2 2

2
‘We must then put y=z+ 'Z— ,

8o that ¢ (y) = y’; and f'(y) = 3"

Thus y*=2"+ 2 ; Toyp. +,lz;', :ll',__l " +...(2),
and after the diﬁ'erentiations are performed, we must pem-t
g for 2,

The quadratic equation (1) which we have employed give=%
two values for y, namely — TEVA=2) (1 2 ; the series which w— <
have obta.med in (2) applies to the value with the upper sigme= -

d £
For 1+«/(1—w’) : —— ; and if the n® power «=

this be expanded in ascending powers of x the first term &
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whxch becomes
E (—l)"“(l+n’ O e~ cos{atz— (n 1) ¢},

where cot ¢ =n, by a process similar to that in Art. §1.
Putting =0 in this, we have for the required expansion
sin (a +y)=sina+a:cosa+

n—-1

+|—(-- 1)"'(145%) ¥ cos{a— (n—1) cot™n} + ...
6. Givena—y+=zlogy=0, find siny in powers of x.

7. Given y=2 + xy’e™, expand y™¢™ in powers of x.

8. Given y =z + « sin y, expand sin y and sin 2y in powers
of .

9. Given 3}= log (z + x cos y), expand ¢’ in powers of .
10. From the equation zy'+ 2xy’+ 3xy*+2y+1=0 de-
termine y in ascending poweérs of z.

1 9 9, 1395 ,
Resilt  y=—~5—35%=53% 4586 °

11. Hy ‘”'h'l“' find the first four terms of the
expansion of coslogy i in powers of x.

1 z 37 &

Result 2T vz 3

12. If y*+ my’+ ny ==z, shew that one value of y is

z_m (.3)’_'_ 2m! —n (:f)‘_m'— 5mn (:f)‘+
n a\n n*  \»n; n® n
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CHAPTER X.

LIMITING VALUES OF FUNCTIONS WHICH ASSUME L.N
INDETERMINATE FORM.

144. IN the statement, the limit of -81—2—0 =1 when 8

diminishes indefinitely, we have an example of a fraction
which approaches a finite limit when the numerator and de-
nominator each tend to the limit zero. The object of this
Chapter is to find the limit of any fraction of which the
numerator and denominator ultimately vanish, and also the
limiting value of some other indeterminate forms.

1w.mmg.

- 3@
Suppose v@

such a fraction that both numerator and denominator vanish
when z=a; it is required to find the limit towards which
the above fraction tends as  approaches the limit a.

We have proved in Art. 92 that
¢ (a+ k) — ¢ (a) = k¢’ (a-+ 6h),
¥ (a+h) =¥ (a) =hy'(a +6,%).
If then ¢ (a) =0 and ¥ (a) =0, we have, by division,
¢a+h) ¢'(a+6h)
V@+h) Y(@+6h)°
Let h diminish indefinitely; then
$(@) . ¢(a)

18

v@ Y@’

the limit when z=a of
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146. Suppose that not only

¢ (a)=0, and ¥ (a) =0,
but also  ¢'(a) =0, ¢"(a)=0, ...¢"(a)=0,

and ¥ (@)=0, ¥'(@=0, ..4"(aj=
By Art. 92,
¢ (a+h) -9 (a) —h¢'(a) ... - ¢“( )‘|_<l>”*‘(a+ah),

V(a+h) =¥ (@) —h¥'(a)... l_\""( @)= |n_+1 \l"'"(a+9h)

Hence, by division, we have
¢ (a+h) ¢™ (a+6h)
Y(e+h) ¥ @+6h)’

Diminish 4 indefinitely, and we have

the limit when 2 =a of \téw; i:‘, EZ;

147. In Art. 145, if

¥ (a) =0,
and ¢’ (@) = some finite quantity,
we have the limit when z=a of\ti ; is infinity ;
if ¢'(@)=0,
and ¥ (a) = some finite quantity,

é (@) .
¥ (@)

And in the same manner, we may shew that if the first
of the differential coefficients ¢' (@), ¢" (a), ... which does not
vanish, is of a lower order than the first which does not vanish

of the series ¥’ (a), ¥"(a), ..., the limit of 1%2—% when z=a,
i8 infinity ; if of a higher order the limit is zero.

we have the limit when z=a of is zero.
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These results may also be obtained without the use of
Taylor's Theorem.
If ¢ (@) =0 and ¥ (a) =0, we have
$a+h)—¢(a) -
pa+h) _¢@+h)—¢(@) _ h ‘
V@+h) Ya+h)—y(a) M’Q-_ﬂlr@ '

Now diminish % indefinitely, and we have

the limit vqhen x=a of $ Ea? :t ((a,))

If ¢’ (@) =0 and V' (a) =0, we have in the same way

imi ¢ '@
the limit when 2 =a of T— v ( ) 1”,, @
¢ (@) ; $'(@)

Hence, the limit when 2 =a of 77
v @ * Y@

This process may be extended, giving the same result as
in Art. 146.

148. Form * .
[+ o]

Let ¢ (x) and yr(x) be functions which both become infinite
when z=a; it is required to find the limit of the fraction

¢ ()

v@)° 1
$) _¥@)
@ _1°
¢ (2)

and the fraction on the right-hand side takes the form %
when z=a ; hence, by the previous rules its limit is

'{‘If"‘(‘% ($(@)* ¥ (a)
yr (a)}? a))* ¥ (a
—F@ O wr(a>} rION
@}
$ (@) _ ¢<a>}’«k’(a).
v@ W@l 9@’

therefore B -—(—; = ;t ((a))

Hence




INDETERMINATE FORMS. 125

149. From the last Article it would appear that the limit
of a fraction which tends to the form %, may be found by

considering the ratio of the differential coefficient of the
numerator to the differential coefficient of the denominator.
But, by Art. 113, when for a finite value of the variable a
function becomes infinite, so does its differential coefficient.
Hence, if

i—i% takes the form % ,
¢ (@)
¥(a)

and thus the result of Art. 148 would appear to be of no

practical value. It may, however, happen that the limit of

-the fraction 1}’: E ; is more easy to settle than that of \%—% .

For example

takes the same form,

log x

8[8 1w

when « = 0, takes the form

,\
\_/

¢r
Here ‘P (a:)

the limit of which is 0.

e
8 .-I 81
I
|
8

Hence, the limit of lﬁi—w , when =0, is 0.

&z

150. The demonstration in Art. 148, which is that usually

¢ @ ; really

given, is satisfactory only in the case in which

has a finite limit. For we divided both sides of an equation
by this limit which tacitly assumes that the limit is not zero
or infinite.

But the demonstration may be completed thus:









128 INDETERMINATE FORMS. ,

153. For example, required the value of
1

= when z = 0.
cot z

Differentiating both numerator and denominator, we find
the required limit is the same as that of

1
T . 8in’z ..
T or of e that is, unity.
— sin*z 4

The same result may be okjained by writing the proposed

fraction in the form g, thus
1
x tanz 1 sinz
= or
cot z z cosz

The limit of _ 1s 1, and the limit of m’m 1; therefore the

limit of the proposed fraction is 1.
As another example we may find the limit of = when cis

infinite, » being positive.

» -1
The limit of % = the limit of “*

=the limit of

n(n—1)2""*
e!

Proceeding thus, we shall, if n be a positive integer, arrive s

the fraction %, the limit of which is 0. ~If » be a fraction, '
we shall arrive at a fraction having ¢” in the denominator and
some negative power of @ in the numerator, which also has0

for its limit.

.
Hence the limit of :’—, , When & = @, is zero.
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Again, suppose we have to find the limit of

Je—1+4/(z—1)
V(@' —1)

as x approaches unity; put 2 =1+ 4, and the fraction becomes

NE+1D)—1+h
v+ 2k)

Multiply both numerator and denominator by
V(1) +1=h,

and we get
2. /k 2
JhTE+2) (b 1)+ 1= 78] ° »./(h+ 2){J(h+1)+1-~/"l

and the limit of this, when A=0, is —

J2
156. There are cases in which not only ¢(z) and ¥(2)
vanish, but all their differential coefficients, and where, oono

sequently, we are not able to ascertain the limit of = $(2)

¥’
For suppose ¢ (z) =a™, where u stands for 5,—, a and n beirg

positive numbers, and a greater than unity: we have

1
¢'(z)= ——” e, .
¢'(@)=nloga.a™ nloga n+1
g m!(lfl) zﬂﬂ ’
and so on.

1
Put 2=% and let ¢ stand for 2%

then  ¢'(z)= ’_M, ,

¢ (@) = nlog a{nlog a.z";:" —(n+1) z‘"}
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1
€ 1 1. e o
2 T X is of course infinite when = 0.

1
Hence, % is 0 or « when « approaches the limit 0,

according as we suppose x negative or positive.

158. Form 0 x .

Suppose ¢(x) and Y (x) two functions of z, such thal
¢(a)=0, and Yr(a)=; it is required to find the limit of
¢ () ¥ (x) as = approaches a.

$@) v(e)= 23,
¥ (@)
and as the fraction on the right-hand side takes the form
g when z=aga, its limiting value may be found by rules
already given. :
F le, let ¢ (x)=log (2 -”f) and () = tan ™% .
or example, ¢(x)= g(.. 2) =tango
Here ¢ (z)+(x) takes the form 0 x 0 when = =a.

x
log (2 -=
Then  log(2 — Z) tan T2 = a)
a 2a L
cot —
2a

The limit of this when z = g, is found by making z=a 3

1 1
_(_1_2_?.
a
T 1’
T2, 7z
2a

which gives 2.
™
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sin .
Again, (i) * takes the form o when z= 0; also

(,]_')‘h’ = e-dn:lou'.

z
Now, sinzlogw:m—;@.:z;logz;
when = =0, we have
sn; z_1,

zlogz =0, (Art. 158),

therefore sinz logaz =0, when z =0,

1 sinz
therefore ( 5) =1, when =0,

A\

nz
Again, ( - z)m % takes the form 1%, when z=a.

g . tan 7% log (3
The above expression =¢ 3 8 (2-2)

2
=¢* when z=a, (Art. 158).

160. Form o —cc.
Let ¢ (x) and 4 (x) be two functions of @ which become
infinite when & =aq, then

$ (@) =¥ (2)

assumes the form o — o ; it is required to find the value of
the expression.

Put y=¢ (@) —v (@),
~ then eV = edl®)-¥l2)
e—v(®)

= e~ *
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Thus e takes the form g when z =g, and its value may be

investigated by Art. 145,
Or we may proceed thus,

= xf—M-
y=9@ -5l

¢ (@)
then y is infinite unless the limit of %g)) is unity; if the
" limit of I((:)) is unity,
Y@
since y= _IM
¢ (@)
it takes the form g

For example, suppose y=tanz— secz;

then y takes the form o — © when 2= g

sec &

Also y-tana;(l—-tanx)
_t—cosecz
T eotz

this takes the form g , nd its limiting value is

eosec z cot 2

— or 0,
—cosec' z ,

161. The limit of l-r—a(:cz when 2=, supposing F (z) to

be then infinite, will be the same as that of Fl(a:) , or F'{z).
See Art. 151. '
But, w =F'(x+ 0h).

If # be made to increase indefinitely the limit of the
second member of the equation is F”(x).
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Hence the limit when = o0 of E—ii)

= the limit when 2= ofw .

If for simplicity we make % = i, we have
the limit of 2 — the limit of (' (s +1) - F (@)},

162. Thle ];(II:lt of {F (ac)} when « is infinite, is the same
og F (x)
asthatof e = ,

But, by Art. 161, supposing F'(z) to become infinite with =,

the limit of =—*2 log @ ; is the same as the limit of
log F (z+1) — log F (),
F(z+1)
or of ) logF—(z)-—
1
Hence the limit when = o of {F (z)}*
Y )
= the llmlt Of —F,(T)' -

Suppose, for example, that we require the limit when = is
1

infinite of {E;}'
By the theorem just proved the required limit
(x + 1):.-1-1 L
= the limit of l 1

= the limit of (”” : 1)

= the limit of (] + i)’
=e by Art. 16.

163. A few remarks may be made on indeterminate frac-
tions involving more than one variable. '
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Assume y—b=m(z—a);
therefore z= fm = e,
m'+1 m-l-‘:’-"

Here the greatest value of z is when m=1, and £ always
c

lies between ‘E and —
2 2

165. We give two more examples.
= @—a)"te(y—b)",
@—al+cy-0°’

this takes the form % when 2=qa and y=b5.

1st. Let z

Put x—a=h and y—-b=k;
™+ ck®
therefore =

If now we assume % = Ak*, we have
_ k"4 AR
, TR Yoan
and, according to the different hypotheses we make respecting
a, m, P, ..., we shall obtain for £ finite, infinite, or zero
values. '
ond. Let z= (-"-"‘.'/)-“ - (“—19) z"+ (\a_ m)y‘.
@-y) (a—y)(a—2)
If =q, and y= q, this takes the form g Put @ + & and
a+% for = and y respectively ; we shall have

z_(k-—-k) a"+k(a+h)—k(a+k)”®
- C(h—k) kR -

If we expand (@ + %)* and (¢ + k)", and make some
reductions, we ohtain

= ”————(;’.‘2' Dy nn=1) (n= -1-13 _(;' = et b ) + ..
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The value of 2z is also determinate if

@ _@)
@ @

@D)=o (&)=0 (&)= G)=o

then proceeding to a second differentiation we have
(&) +2 (@) ¥ @+ () w @
(fx +2(dzdy)"' (@ >+(dy:){~tr @)

which is generally indeterminate, since 4 (z) is an arbitrar
function.

Example 1. Suppose
_logz+logy
z+ 2_y 3’

(d_):) ~=1, when =1,

(df) =,’;= 1, wheny=1,

, (Art. 176)

a=1, b=1;

dy
d d
(z)=> (F)=2
1+ (x)
therefore = ow @) v @)’

which is really indeterminate, and may assume any valt
between + w0 and — .

Example 2. Suppose
_@=1t4gt-1
@-1nt—y+1°

Here z takes the form g when z=1and y=1.






142 INDETERMINATE FORMS.

Thus we obtain again the form g, and we may continue in

the ordinary way the process of evaluation. We may how-
ever obtain the result more easily by arranging the fraction
we have now to evaluate thus:

2(1+2a:’)cos’a:_x x
(1+2*+2a') (1+cos’z) " sine’

Here the first factor is not indeterminate when x=0; its

value is then unity. The second factor takes the form (9)’
and its limiting value is known to be unity. Thus unity is
the required limiting value of the original expression.

Or the original expression may be evaluated in the follow-
ing manner. It may'be put in the form

cos z log (1 +4* + )
’ sin*z :

Now cosz=1 when =0; we need not then pay any atten-
tion to this factor, but consider that we have to evaluate
log (1 4+ 2* + a¥)
sin*z
when 2=0; and we may proceed in the usual way to dif-
ferentiate the numerator and denominator. Or if we are
allowed to use the results of the expansions of functions we
have
log(1+2*+a') &+a2'—3 (' +2)+3 (" +2)—...
Ny —
sin’a =24y

=z’+1}w‘—...

r—tat+...
_ l+%$’:-_..
1=} ...

=1 when =0.
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EXAMPLES.
Find the limits of the following functions: ,
1 logz s when z=1. Result 1.
z-1
-1 : 1
2 Z= =1 -.
o1 when z=1 Result -
3. ‘- 8", z=0. Result 2.
sin 2
4 = e"'— e , z=0. Result 2.
z—gng
5, -sing @=0 Result — |
(sinz)® ’ ) 6
6. =¥ 2= @
P -z 0. Result log 3
7. tanz — z z=0. Result 2.
z—sinz ,
8. z—sinz - 1
ot z=0. Result 6
9. 8in 3z , z=0. Result — 3.
3. 2
z—_sn2zx
2
10 1-otlege = -
1=V @o—a)’ x=1. Result — 1.
11 1 z x=1 Result — 1.
logz loga
12. €—2coszte” z=0. Result 2.

xsinx ?
13. sin2z+2sin*z—2sinz

< , =0, Result 4.
COSXx—COo8 X
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14
15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

26.

217.

EXAMPLES OF INDETERMINATE FORMS.

a:tana:—;-rsecz,. x=g. Result - 1_
rz—2)c+x+2 1
( (e)z_ l)s ’ xz=0. - Result -6.
ot + 82° — Ta* — 27— 18
S~ — TP 2le—18" Result 10.
) 1
r=-—3. Resultib.
—_ 4\ 5
2 (32 — 221 wa, =1 .Resultg—l.
1-a% 2
14 (@-1t . 3
m, z=1. Result—z).
g _ — 1)t
% x=1 Resull 0.
m sin z — sin ma m
z (cos = — cos max)’ z=0. s
—wg——, z=0. Result —2—,
1 — cos mx -m
sin (a +2) —sin (a—) z=0, Result —coto
cos (a+ ) —cos(a—x)’ e
fon so—ntaaa, z=0. . Remlt.
’_ 2 —
ACS waa:)+a % ama R”“lt,/;/il
Je B
a
Jo—va+(@—a)
cx=a . Result ——
V@ — ) ’ 4(2«)
2 + cos 2z — sin m—2z\' w
‘\/(a:sin?a:+wcosw)—(2sin2d:)' =3 Result-,l.
9% sin —

o x=0o. Result a.



* 29.

30.

31.

32.

33.

38.

39.

40.

41.

42,
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1
(@® —1) =, x=0w, Result log a.
(g"‘l) ) x=o. Resuli €.
m*simnr—n"sinmz (1) £=0. (1) Result 1.

tannz—tanmz ’ (2) m=n.
(2) Result n"™ (n cos nz — sin nx) cos’ nx.

1 -
(1_!..;’)’ x:cx’), - Result 1.
1
’t.a z
:‘") , z=0. Result 1.
L
(ta.;l z) ) z=0. Result b,
1
»
o
(cos m);, ° &=0 Bosult 1.
(cosvm)‘—?i’ x= O. Result c‘?—;‘ d
(cos mw):‘, z=0. Result 0.
2 3 '
M, z=0. Result 2.
p— 2 ®
(€°—e™) :‘“f (€+e7) , x=0. Result — 3.
1-y(1-2) =
Vitg-varay 7% fedd
(sinz"'"’, w=7—;». Result 1.
y2—sinz—cos T s
YTt @=_. Result oWeR

T.D.C. L
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43.

44.

45.

46.

47.

48.

49.

50.

51.

W
S

b4,

55.

EXAMPLES OF INDETERMINATE FORMS, -

V(e — ’).cot{g,\/(:;z)}, z=a. . Result.%.
‘ 2

(l—a:)tan"r—z, z=1 Result -
2 T

llz ) 1
x -, z=1 Resultz.
P z=0 Result.0

T '
890—2— .

z=1 Result .

log (1 —=)*
1 )
(da™+ Bz ...+ Mz + N)*, x=o. Resultl.

1. 22+b+424(az+ bz + a°)

”/mlog b+ 2 4/(ax) »  #=0.
Renult 3 {y/(a+8) — .
1 1 1 L
\/{-’”(‘0-1) +I:?} Tog? TT 0. ) Resylt -1
cos xf —cosal - } o Result sin afe
T e %0 g6 ! z=a. osult —-—-
& +log (1:_-’”) _ . )
tanz—a z=0. Result -}
e'sinx—ea{sina+~/2(x~é) cos (@ — 3m)} o
’ e—¢(x+1—a) »  ®=
Result 2 cosa
i1 1 .
(a. +a1 :---+?T:) F] =0, Resul‘ a‘a.".ar
(x +sin z — 4 sin 3 z)* o 198
(B8+cosz—4cos )’ z=0. ~ Result T
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(™

{log a:} 2=o. Result 1.
(log {c);z- a :) A z=1 Result 1.
sm*® (r — .

Shew that when z is infinite Zz—z; is infinite or zero,

according as m is greater or less than n; a and b being
both greater than unity.

Shew that when z is infinite

- 1)_1
r— log(l+w =5

If us/(zc) = ta "ajm+l {\;{; \/(1+aciv)},shew

2a a
that u=-"an nd d—é——E—,whenw 0; and that u=0

and d_u=.0 when z= .

dx

L2
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CHAPTER XI

DIFFERENTIAL COEFFICIENT OF A FUNCTION OF FUNCTIONS
AND OF IMPLICIT FUNCTIONS.

168. SUPPOSE u a function of y and z, and y and 2 them-
selves functions of z, it is required to find % . This of course

might be obtained by substituting in  for y and 2 their values
in terms of , by which substitution u becomes an explicit

function of @, and g—: can be found by previous methods.

But it is often convenient to have a rule which gives %

without requiring the substitution for y and z. To this rule
we proceed.

169. Suppose u=¢ (¥, 2),

where y and 2 are both functions of z. Let # become z + Az,
and in consequence let y, 2, and u, become respectively y + Ay,
z+ Az and w+Au. Then

Au=¢ (y+Ay, 2 +A2) - $ (y, 2)
=¢(y+Ay, 24+ A02)—$(y, 2+82)+P(y, 2+A02) — p(y, 2);

_9y+Ay, 2+82)—$(y, 2+A42) Ay
Ay Az
+ 8@ 2+82) (g, 2) Ae
Az Az*

Now let Az and consequently Ay, Az, and Au, diminish
without limit ; then

therefore
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made in finding the values of these differential coefficients,
Hence the above equation should be written
du_ sﬁ_‘)%r du)«!_z_
dx (dy dx (3; de’
Of course the brackets may be omitted, and indeed frequently
are omitted, provided we can feel certain of remembering the
conditions which they are designed to express. The begsnner

will do well to use them, although as he advances in the
subject he may be able to dispense with them.

171. For example, let w=2"+ 3"+ 2y,

z=sinz,
y=¢6;
then @)—3

du

(£)=22+!/.
dy _
prald
‘—i—f—oos:r,
de ?

therefore %: (B8y*+2) "+ (22 +y) cos
= (3¢” +sinz) ¢* + (2sin z + ) cos z
=386+ ¢" (sin x + cos x) +sin 2z ;

and this value is of course precisely what we obtain if we
substitute in % for y and 2 their values in terms of z, thus
obtaining u =¢* + ¢ sin # + sin’ z, and then differentiate with
respect to x.

172. An important case of the general proposition is
obtained by supposing 2=z o that ds _ 1. We have then

dx
2@
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Here we cannot dispense with the brackets or some equi-

valent notation, (Z—Z) denoting what would be the differential

coefficient of » with respect to =, if y were not a function
~of , and % denoting the actual differential coefficient of u

with respect to 2, when y 78 a function of 2.

173. For example, let u = tan™ (zy),
y=¢;
then (%) = %&c’y”

&)~

therefore Pk e e

. T 1z’ . ,
which of course is what we obtain if we differentiate tan™ (ze")
with respect to z.
174. Suppose u=¢ (v, y, 2) where v, y,z, are each func-
tions of z. We have, as before,
Au=¢(v+ Ay, y+ Ay, 2+ A2) — ¢ (v, 3, 2)
=¢(v+Av, y+ Ay, 2+ A2) —d (v, y+ Ay, 2+ Az)
+¢(v,y+Ay, 2+ A2) —P (v, ¥, 2+ Az)
+¢ (09 2+A82)—-$(v,%,2);
Au_¢(v+Av, y+Ay, z2+A2)—¢ (v, y+Ay, 2+A2) Av
Az Av Az
¢ (v, y+Ay, 2+A2)— ¢ (v, y, 2+ A2) Ay
+ Ay Az
¢("v y’z+Az)_¢(”9 Y z) ‘_A_f
+ Az az"
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Proceeding to the limit, we obtain

du (dnydo i\ dy ()
‘dee \dv/ dx (d dx (Zéd—:?:

The process may be extended to the case in which w involves
more than three functions of .

175. Examples may occur more complicated in appear-
ance, but essentially involving the same principles as those
of the preceding Articles. Suppose for instance

“=¢(”>3/: z, ),
v=1 (y: %, ),
y=f(=),

s=F (),

so that u could, by performing the requisite substitutions, be
made an explicit function of z: it is required to express the
differential coefficient of » with respect to a, without pre-
viously making these substitutions.

o @) () 2 (D) (2),

dv (dv\dy  (dv\dz  (dv
d—f(d—)a"‘(d—z zﬁ(@)
d , d. ,

a%=f (@), d—fD=F (@)

Hence Z—: = (g—;) {(%) f () + (% F (=) + (Z_.::)}

du\ , , \ . [du\ L, dn
+Hghr @+ (Z)F @ +(z)-
176. The same suppositions being made as in Art. 169,

it is required to express d——; . We have
du _ (du\dy  (du\dz
z-(3)d+@)z
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The limit of ¢ (+4z, 1';’;— ¢ (2 9) , when Az diminishes,
is the differential coefficient of ¢ (x, y) with respect to z,
Jformed on the supposition that = alone varies, and if we put u

for ¢ (z, y), this limit may be denoted by (Z—;) .

The limit of ?("’+A””'-’/+Ag)“"’(z+A‘”' 9)
Az remained constant, be the ydiﬁ'erential coefficient of
¢ (z+ Az, y) with respect to y, formed on the supposition that
y alone varies. But as Az diminishes without limit when
Ay does so, the limit is the differential coefficient of » with
respect to y, formed on the supposition that y alone varies.

It may be denoted by (Z_;) .

The limit of 2—1 is % Hence finally

)2+ (3o

179. For example, suppose a’y* + b°2* — a'0* = 0.

would, if

Here u=a"y’ + b’2* - a'P’,
(-
therefore a’y Z—‘Z +b'z=0,
therefore % = —%,,—; ........ veeeereereraens 0.

Since y= %V (a*— ") from the given equation, we obtain
directly
A - 2 (@)
&= " av@—2)

When in (1) we substitute the value of y in terms of z,
the result agrees with (2).
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In this case we can verify our new rule, by comparing its
results with those previously found. Tn ~more complex
.examples, such as

&’ — ax’y + b2y -y =0,
we can find Z only by the new method ;
putting u for o — aa’y + ba'y* — o, we have

(Z“) 5a* — Baa’y + 2bay’,

du .
(‘-@) = — az® + 2baly — 5y
dy 5z'—3ax’y + 2bxy’

therefore T 52y taat

180. We shall now investigate the second differential

coefficient of an implicit function.
From the equation

uor ¢(zy) =0,

@)
we have deduced Z %‘2- ..................... (1):
(dy)

2,
it is required to find
We observe that ( ) being a function of both  and y,
its differential coefficient with respect to  must be found by
Art. 172. If we ‘put v for (%), the required differential
coefficient will be
d'u) dy + )
(dy dz (dz ’
Similarly, denoting (@) by w, we have for its differential

coefficient with respect to =,

(7)) %+(%)-
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Hence, from (1),

oy D2 @D

Now @)=

the latter symbol denoting that « is to be differentiated twice
with respect to &, on the supposition that x alone varies; also .

()~ Gy
dy) ~ (dyda: ’
the latter symbol denoting that u is to be differentiated with

respect to , supposing @ “alone to vary y, and the result with
respect to y, supposing y alone to vary. Similarly

z) (&)

(da: - (da; dy/)’
3)- (%)
(dy N (d—y’ '

Hence, substituting in (2), we have

g UG ) DI (2)

If we substitute in (3) the value of %—Z ‘given by (1), we

have, since (dj;.'c) ( df;y) by Art. 134,

)6 (2B ) ()8

@)

d!

<

e (4).

§
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Thus (2) becomes
{@ @ @)+ el
+(deqy) 2+ (3) (&) + (@) o
or
(5’5)+2(df§y>r+(3;“>p'+(2’;‘) {(&)e+(@)-

But (25) p+(dp) g , that is dz“ (Art. 172), and with

this simplification we obtain the required result.

A very common mistake is to omit the brackets in

B) .. (%) ) iy writon 31
(«Ty) p+ ( 72 and thus (( 7p) 18 written —%, and there

remains a superfluous term, namely ;‘% , or as it has perhaps

. &y
been written by the student, d;/% .

183. In Art. 182 we proceeded very strictly according to
the literal requirements of the rule involved in equation (2) of
Art. 181. 'We might have reasoned thus.

We have merely to express symbohcally the fact, that the
differential coefficient of

du\dy | (du
with respect to @ is zero.

~ Now the differential coefficient of (d ) with respect to =

dz dz*

dy
. &u d’uw\ dy .
18 (da: dy) + (2_17) dz’
:'md the differential coefficient of dy with respect to « is Ty .
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Again, suppose ay’ —ba’y+a'=0 to be the given equation.

Then du) 4o’ — 2bay,
d
5)-wr e .,
' ) dy 42— 2bxy «
therefore o= m . :
This value of d:i takes the form o when z and y vanuh

Hence, differentiating the numerator and denomma.t.or,
have

2o — 2by - 2bx Z——Z

dy _
T " o |
, d.'n 2bx — 6ay %
when z and y are made = 0.
Again, we have the form g Hence, dlﬁ'erentla.tmg agam.
dy .
&y 24z — 4b — 2bx % o
Tm ’

26— Ga( y) 6aydz,

« and y being made each =0. Thus assyming that ”3

and y Z—’i/, vanish, we have
‘ dy ( 1
Lo 6a (% A —-u%
from which ) 3—% =0,

193. It may be noticed that equation (2) of Art 1%0
differs from equation (3) of Art. 181 only in the omission of
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s (U Lo (UN _ g s
Hence, y(z)+3a(1) 4az @' =0,

BEAPRN |
If now 35/ have any finite limit, the term 3* (il) will vanish
when y=0, and we have for finding the ultimate value ofi

the equation
3a® (g.)‘— 4a? (‘:%) —a'=0,

or 3('2)’—4(%)-1=0;

therefore y_ M .
@ 3

If g have an infinite value, then Z has a value zen:
putting the given equation in the form
. -
y'+3a'-4a'f—-a’(‘f) =0,

* we see that 2 —0 ultimately would not satisfy it. Hence!
has not an mﬁmte value.

1

Again, suppose  ay®—dz'y +a'=0;

therefore a (%)' -b (ﬁ +x=0:

when  vanishes, we have ¥ {a (-Z)'_ b} =0;
z |\ :

=i'\/é'
a

Again, suppose '+ as’y + bay' —y*=0;

therefore z+ a'z +& ("é)'— y (‘;/)’= 0.

8 IR

therefore ':—i = 0 ultimately, or
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The finste limiting values of -g are given by

therefore g =0, or

And since the given equation mé.y be put in the form
] 2
o 0o
‘we see that §= 0 ultimately satisfies it;

therefore %: o ultimately for another value.

Hence the limits of g are 0, or -—g, or .

This method is free from the difficulty which is pointed
out at the end of Art. 191.

If we wish to ascertain by the method of the present Article

.the value of g—':

a+a for & and b+y' for y in the equation which connects
z and y. We shall then have to find the value of g—%, when

#'=0 and y'=0; and this may be ascertained by the method
shewn in the preceding Examples.

at a point for which =g, y =b, we may put

EXAMPLES.

_ /(2=5\ .
1. fu= J (m , where z and y are functions of z,

fin %. '

2. If y=sin™" ;, where z and y are functions of «, find d

au
‘ht
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10.

11.

12.

EXAMPLES OF DIFFERENTIAL COEFFICIENTS.

= dy___my

Ifye"'—aa:", dz_w(l+7§)° R

If o — 3" =0 dy_y —zylgy
’ de o' —azylogx’

dy

If (a+9) (B'~y) + (@ +a)'y* =0, find 7.

. - dy
If sin (zy) .mw,.ﬁnd e

s 3, 8 = a'y _ 2a’a.'y
Given 3y’ +2® — 3azy =0, shew that &= —ad]

s,
Given a*+ 202’y = a3, find % and 2y , and write do
the third derived equation.

If y=¢(x, y, ) and ¥ (z, y, ) =0, find g—:

du  drdy dydr dx

If u=(z, ), and u=y (), find Z—;‘.
Result Z—; {x’ @) — (g‘;”)} - g—;) X @)

If w=a* +/(secay), find Z—:, (1) when « and y:
independent, (2) when z+y=a.

dy

h‘

Result dy _ _ y N (sec zy) tan zy + 20 y2" " log a .
dr  z,/(sec zy) tan zy + 2a* a" log a log =

If o + ¥/ (sec zy) =0, find




4.

7.
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If '+ 2aa’y — ay® = 0, shew that Z—‘Z=O, or +4/2,
when =0 and y=0.

If 2'—ay’+ 2axy’ + 3aa’y =0, shew that %:0, or—1,
or 3, when =0 and y=0.

If a2+ 2" —ay’=0, shew that d—y=i, when =0

&

and y=0.
If 2y = (& — ") (b+ )", shew that D =g b
’ &= @

when =0 and y=-2.
If (-2 (x— 1)(0:——) 2 (' + 2 — 22)?%,
find Z—wwhena:andyvamsh and wher z=1, y=1.

Bt o (3) s =249,

If y~y"+ 82y — 22 =0, find % when z=0.
Result 1, 2, or —1;'-.
du

Find p if w+a+y'+2"=
log (:vy)+—=a,
log( )+zz [

Resul du Y-y 2 (zz—1)
Yz a;(a:+y) z(xz+1)

a g/‘ dz d%

athra-1=0 i 2o

d’z

If and ‘Ty-'.



(174 )

CHAPTER XIL

CHANGE OF THE INDEPENDENT VARIABLE.

196. IN Art. 60 we have shewn that

d 1
d_Z= L ),
dy
and in Art. 63 we have shewn that
dy dy d
d_i = % d—’; ......................... @);

and we now proceed to some extensions of these formulzae.

. Given z and y, both functions of a third variable e, it
'i8 required to express the successive differential coefficients
of y with respect to , in terms of those of y and & with
respect to z.

' dy dy d
We have (-g} = ;zg £ by (@),
dy
_dz
~Z by (1)
dz
dy dy
dy _d dz_2d ¢T_z dz
Hence d_?—d_;c Z’w-_dz d_.v% by (2):
dz dz
dy dz d'z dy
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d’?/ dr dz _‘?,’/
dz dzdz dz* by (1).
(dz)
d’y de d'z dy
. d% _ddfdz dF dz dz
Again, d.c’ dz dx )! "dr
(dz

(@EEFE @ FFE-FY)a

da:)" dx
(a;

(d yde &'z dy da: (d yde  d'z dy)

(iz 5
(a;)
. . . dly d%
Similarly we might express Tt

This process is called “ changmg the independent variable
from z to z;” since in e Y the mdependent variable is z,

dyde d'z

but in the expression %x_)dz_ the independent va-

@

197. Suppose in the preceding Article we put z=y.

riable is z.

W, . dy _ dy_ ay _
e have =L 2 0, pP 0,.cc0ee

do_do do_d'n T
N CRE
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dy_1
and thus ¢7:c_z:ct’

d’ _%g;? i (#’)'
d.® dz\®
()

198. The formule of Art. 197 may also be obtaim
directly thus:

dy 1
de dz’
dy
dy_d 1
therefore s Rl 2_;
dy
21 d
dy &z’ da
dy
d's &'z
—_ Y dy__ dy
@)n'd,c z—z—).)
(dy (dy
d*z d*zx
)" y (dx\*
(3/) (dy)
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Put n=1; then

(e eme s

dy _dydz_  dy.
But CrAR P T L
&y _(d dt/
therefore a"d——;, = (dt 1) G- SN |

Put n=21in (1); then

(dt 2) «w“” da:”

a:’ff,=(%—2) (m-jl)m...‘ ............. (s).

.Proceeding thus we deduce

E.TONT NN OIS W AN

201. It is often useful in geometrical applications of the

or from (2),

Differential Calculus to have expressions for Z—Z and % in

terms of 6, supposing
x=rcosf .
y=rsin0}.n..u; ...... Veseseccscces (l).

Since y is by supposition some function’of «, it follows
from (1) that an equation subsists between  and 6, so thst
r may be considered some funetion of 6.

:dy %19 sm0d0+rcosﬁ

Now from (1),

%lﬁ“i

cosﬁg—e—-rsmo

sin 6 Z—g+r cos 6 a0

ﬂ.'_,—‘-.
c0s 0% rsind %

S~

B
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we may use the formulae
du _du dr

dz=drdz”

du__ggdr
dy drdy

du do

do dz’

du db
+ 36 dy*

204. If the equations which connect :c, y, r, 6, are giva

in the form
F, (=, _y, 7, 0)=0.ceeurieiiennnennnn. ()

F,(@, y,7,60) =0 ccrirniinnennnannns @)

iz do Qg dy
dr’ d@’ dr’ df
required by the formule of Art. 202, by successively eliminst
ing y and z from (1) and (2), obtain explicitly the values ofz

we may, in order to find the values of —

and y in terms of r and 6. Or, by Art. 189, we may find |

3:; and Z‘Z from the equations

(@)+ (@) %+ (5) 8=

(@)+ (&) %+ (%) %=

and use two similar equations for g’: and ZZ
205. Exzample. u=f (2, ),
&=rcosb,
y=rsinb;

here

.
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If we employ equations (1) of Art. 206, we must put
the relations between =, y, and z, in the form
r=v@+5+5),
0mtan VE+S)
g

dz

do z oosOoos4>
dz~ +y+z4w+ﬂ r
a9 _ y _cosfsiné
dy +y’+z’ ‘VE+y)  r
do
dz
dé

__NE+y) snb
T Ty g
___y __sing
dx Z+y  rsinf’
dp = _ cos¢
dy £+y rsinf’
% _o.
dz ?
therefore
du _ . du oosOcos¢du sing du
d—{;—smo ¢ r dd rsnfdp
du “du eosOsmdulu cos du
d—y'=sm0 ¢ r da+fsin0d¢ oooooo (2),
du odu smﬂdu
& da

which will be found consistent with (1).
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Hence we infer that az% +‘y ?’iﬂ equal to nv, togethe *

with two series; and by uniting like terms in the two series
we obtain a single series of which the general term is

(m+1l)n(n—1)...(n+1—=r+1) ... iy
[Z.. x y'dwvrn—'dyr'
dv, ,  dv,

Therefore @+ y:i; = N0y + Vs 3

and thus (1) is proved ; we may write (1) for abbreviation thu,

Ve = {% + 5% - n} Vg eerrenancrcnnenne (2)._

" Put n=11n (2); then
(d . d _(d ., d du, du
wligtig— 1 (o -1 Hem o g

i ag— i aot - G g o

as we may write it; again put n=2 in (2); then

o {d,d ) (d. d d d d g}
v,—{@+%—2j'v’—{d—0+zﬁ—2}{@+z$—l}{a—a'+d¢ b

Proceeding in this way we obtain

vl e}l Y- oy

EXAMPLES.
1. Change the independent variable from z to y in the equati®

d* d .
w’d%:+w£u+u=0, supposing y =log 2.
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dy, 2 dy Y
Mformd.z’+1+x’dz+(l+ pp
tion in which @ is the independent vanable, where
-1
0=tia"z _Resuh 7 I+ y=0,

=0 into an equa-

Transform %y 1 g +y=0, into an equation in which

¢ is the independent variable where " =4,

9y, .
Result tdt’ 2 t¥=0
dy_ 9 __ =log——t—
H—_(e‘+e")” and x_logv(l_t,), shew that

Y i dy
(g_f)._+ (1_3g’) __t_—
'Ifz——cost then

d’y
- ar‘)E—a:—--O becomes —.; =0.

:c‘-g'—'/—y
Transform , by assuming =1 cos 6,
{1 + (.TZ) © y=rsind.

Result z .

r*+(a)}

If z=rcosf, y=rsind, shew that

d
2+9% 14
T,
“az Y
If 2=a(1—cos?) and y=a (nt+sin ), express
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9.

10.

11.

13.

13.

14

EXAMPLES OF THE CHANGE

Suppose  to be a function of » and

P=zrtal+z]+ e 20
then if
du  d'u  d'u d*u
E;li-i'd-;?'l'da:.-l-... ..-|-dz,
shew that
d'v n—1du
Fr &
Given x=acos¢, y=>bsin¢p, express
{1+(3i)} Do
— in terms of ¢.
-5 '
{a® sin ¢+b’cos'¢)
Result 25
Transform dy+2e —e> dy+ dr'y s=0 into an

do* " et e dr ' (K +e™)
equation in which ¢ shall be the independent vamble,
‘having glven z=log4/(tan ¢).
Resule 33 4 124=0.
Cl‘}%nge the mdependent variable from y to z i
d*u du
a7 4ta,nydy, + 2 tan® yd =0, supposmg tany—l'—'-

a’u du_
Result (1+a:“(—i?+2:c(l+w’)dw, +25=

Transform :Z/, +

the independent variable.

(gl_) into an expression in whichy =

d 2
which & is the independent variable,

Given z=t+ !, transform = into an expression in
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21.

22.

23,

24.

EXAMPLES.
dy = (dy dy
It 274 y(az;) %—_o and z = ye', shew that

dz
dyl + (iTy

Given u=4(3;—.“,’) +( ',) , and (Z‘—f)'+ (%I).=l_’
shew that u(g‘:)‘ ( d:’) +( Ty ) (%’)'.

Transform :%, secl?cose0030+yn’ta.n’0—0 into an

equation in which z shall be the independent variable
having given « =log (sec§).

=0.

v

Result d—g,+n’y=0.

If y=¢? and z=sin 6, shew that '
dy_ e° {

da® ~ cos®0

d*u v  d'u . du du.
Expressdx,+2dxd+dy,mterms fds T

where s=¢"+¢', a.ndt e*+e?.

d*u d*u Ay du s
Resultsas—, 28td.sdt+t‘dt’ ds'”dt'

3 sin 0 cos § —sin* 6 —2}.

If x=ae’cos¢, and y=aesin $, shew that

-9 du d’u d'u du
-"'aw < FPr e v ik r o
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If ¢'(x) be not zero we can give such a value to A4 that
the sign of

M @)+ ¢ ot 0B)
shall for that value of h, and all inferior values of %, be the l
same as the sign of k¢'(x), because gcﬁ” (x+ 6k) can alwap
be made less than ¢'(2) by taking & small enough. In this

case
¢ @+h) - ()
and ¢ @—h)—¢ @)

have different signs, and therefore ¢ («) has neither a maxi-
mum nor minimum value.

Hence, as the first condition for the existence of a max-
mum or minimum value of ¢ (z), we must have

G (2) =0.ciiinninniiiniinnnianns (1)
Let a be a value of = deduced from equation (1), so that |
¢ @=o0.

‘We have now, by Art. 92,
$la+P=d@+5 4@ +[5 & @+ 0.

Suppose ¢"(a) not zero; then by giving to A some valme®
sufficiently small, the sign of

R, -
G @ +¢ @+
will be the same as that oféfqb" (@), or of ¢"(a), for thas
value of £ and all inferior values;
therefore ¢ (a+h)—¢(a)
and $(@-H—¢ (@)
have the same signs.

If then ¢”(a) be positive ¢ (a) is a minimum value ¢
¢ (@) ; if ¢ (a) be negative ¢ (a) is a maximum value of ¢ &2

o . R
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By Art. 172, we have-
() ()%

Also, putting v for ¥ (z, y), we have, by Art. 177,

gl,y____(%);
“ @

d;

w\ (dv
therefore g - (%-x) - (a—z?_@(ﬂ) .
(d y)

Hence, the values of z and y that render % a maximum
or minimum must be sought among those that satisfy simul-

taneously B 7 D 1
(&) (@)~ (7) @)=
and ¥ (z, y) or v=0. ‘

2, .
The value of g;; must then be found by Art. 176, and

we must examine whether the specific values of # and y
render this positive or negative, in order to determine whether
% is a minimum or & maximum.

Example, u=2"+3",
while (®—a) '+ (y—08)'—c'=0, or v=0.
Here (%) =22, (%’-;) =2y,
(%) =2@-a, (Z—;)=2(y-b).
Hence _ z(y-08)-y@—a)=0;

therefore ay = ba.
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12.

13.
14.

15.

16.

17.

18.
19.
20.

21.
22.

EXAMPLES OF MAXIMA AND MINIMA,
u=z(a+2) (a—2)"
A maximum when z=§-’, and when z=-g,

.. a
and a minimum whena:=—§.

_(a—2
Y=a—2z"
A minimum when =Z.
u=b+c(z—a)l
A minimum when z=a.
2 ¢
LA
x a—wx
A minimum when- o:—-——z, and a maximum when
a’
2=a=0
32 —at
(a’+mﬂ)'

A minimum when =0, and a maximum when z=+a
u = (mz + na)™"* — (m + n)™"*"z™a"

A minimum when z=a.

Shew that — = is a maximum when z = cos z.
l+ztanz

1
Shew that % is a maximum when z=e.

n’a . ar
Shew tha t ta.n3 is a maximum when z=g.

Shew that sin # (1 4+ cos z) is & maximum when z=

If zy(y—«) =2d’, shew that y has a minimum value
when @ =a. :
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55.

57.

58.

60.

61.

62.

EXAMPLES OF MAXIMA AND MINIMA.

Determine the cone of the greatest convex surface that
can be inscribed in a given sphere.

Determine the cone so that its whole surface shall be

a maximum,

. r
Height =7 (23—417).

Given the volume of a cylinder, find its height and
radius when the sum of the areas of its convex surface
and one end is a minimum.

The height is equal to the radius.
Of all cones described about a given sphere, find that of

minimum volume.
The sine of the semivertical angle must be {.

A series of cones have their slant sides of the same
length: find that which has the greatest volume.

The tangent of the semivertical angle =/2.

Find the position of the chord which passes througha
given point within a parabola, and cuts off from the
para.bola, the least possible area.

Find a point in an ellipse from which, if perpendiculars
be drawn to two given conjugate dlameters the sum
of their squares will be a maximum.

Prove that ¢ { { ()} is necessarily either a maximum or
minimum when f(z) is a maximum. And so also
when f(z) is a minimum.
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EXPANSION OF A FUNCTION OF TWO INDEPENDENT
. VARIABLES.

-228. LET u=¢ (x, y) be a function of two independent
variables, and suppose ¢ (z+ %, y+k) is to be expanded in
ascending powers of 2 and k. Put

h=ak!, k=adk,
then G@+h y+k)=¢ @+ dk,y+ak);
the last expression may be considered a function of @, and
denoted by f(a). By Maclaurin’s theorem,
F@=F0©) +£'(0).a+s"(0). llz F v
we shall now shew how the differential coefficients of f(a)
may be conveniently expressed. Suppose
Lz ah’_=a:', y+aok=y';
then f(a) stands for ¢ (', ¥') and since both 2’ and y’ con-
tain a, we have by Art. 169, A
vy _db(@,y) &2 db(,y) dy
@ - dx  da + dy  da
=% do (=, y)  ,.d¢ (@, 3)
- h da;' + k dyl .

Also, by Art. 63,
dp(, y) _d¢(«,y) do,
da de’ " dx’
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therefore ¢ S;: Y) = dé EZ; y) .
Similarly d¢ &, ¥) = dé (z, ¥) :

dy' dy
f'(a) = hld¢ S’;’ y') +k'd¢ sizy" y’) ,

hence
which, for shortness, may be written

4 7 df . ’ df

S@)=Fk o k dy’

Similarly,
Fe=mn Ly wn L +k”ZyJ:
RN i ,,,df un G af
S (@)=h d?"'ahkdz‘dy"'ahk dzdy""kmy

The law of the formation of the successive differentia
coefficients of f(a) is thus obvious. When a=0, f(2) bt
comeés u; hence we have

fO) =2
)= h’d—“+k’dz
” ry d’u
f0) =K a2k E Tody +k"dy,.

---------------------

Restore % for ak’ and % for ak’; then

du
_ dx+h y+k)= u+h +kdy

L d*u d*u d'u
L{ T+l y,}

d®u d*

3 N 2 d,“}
L{ d:v’+3hkd"d + 3kk dzdy’-l-k.









MISCELLANEOUS EXAMPLES. 223

MISCELLANEOUS EXAMPLES.
Shew that if # and ¢ are positive

2log o+ 2+

decreases as = increa.ses.
Shew that if  and ¢ are positive
x )"”
(c +x

increases as x increases.

If u=(x—38)e"+4ze"+x+3 shew that %’ Z—:,and u

are positive for all positive values of z. See Ex. 10, p. 86.
Shew that for positive values of & the expression
& (z—2)+ ¢ (z+2)

@—1)

diminishes as 2 increases, and that its greatest value
.1 :

is =

Demonstrate the following approximate expression when
« is small,

(I-l-:v)‘—e{ 2+11:L’ 7:1:}

24 16
H -
Evaluate QL:?—E when 2 = 0.

o °

Result. —

D

Shew that when z is infinite
I etog (141) =
a:(l+z), log(1+2 =0,
Find the value when z is infinite of
1\* s 1 )
8z’(1+5) — 8ex’ log (l+az .
Result. e.
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10.

11,

12.

13.

14.

MISCELLANEOUS EXAMPLES, .

T -
——~tant2

4
Evaluate m when =1,

log: (L;Ot g)

m when 2= 0,

Evaluate

Evaluate —ém—, when z =

ol

tan nx — tan ma

Evaluate sin (n*x — m'z) ’

(1) when =0, (2) when n=m,

In the equation f(z+£k)—f(2)=hf"(x+ 6h), shew
that if f"(x) is not zero the limiting value of @ as h is

mdeﬁmte]y diminished is l. also shew that if f"(z)

is the first of the differential coeﬁiments f'(@), f"(@),...
which is not zero, the limiting value of @ as A is in-

definitely diminished is

N
1 I
oy

In the equation f(z+%)—f(2)="Af(x+ 0k) shew
tha.t if 6 be the same for all values of %, it must equal

5 and JS" () must be constant,

Change the independent variable from z to 2 in the

equation

f‘z+zzy—l—(logz)’{ d’y

where z =¢i27,

Result, Ig+ta.na:

ay_s



16.

17.

18.

19.

20.

MISCELLANEOUS EXAMPLES. 225

Transform the expression

du\* | (du\* (du\'| ( dw | du du)™*
(@ @)+ @} earrg+z)
into one in which 7, 6, ¢ shall be the independent
variables, having given
z=rsinfcosp, y=rsinfsing, z=rcosb.
If 2, y and £ 7 be co-ordinates of the same point

referred to two systems of rectangular co-ordinates,
shew that :

Tw-(h) - Far-(Eh)

d2* dy* ~ \dedy) ~ dE* dy* \dEdn/"

Shew that 2'+ zsinz+4cosz is a minimum when
a=0.

CQ is the perpendicular from the centre C of an ellipse
on the tangent at a point P: find the maximum value

of PQ.
_ Result. a—b.
A straight line drawn from the extremity of the minor
axis of an ellipse cuts the major axis at @ and the

curve at P; from P the ordinate PN is drawn to the
major axis: find when the area PQN is a maximum.

Result. PN=2 (y17-1).

T.D.C Q
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CHAPTER XYV.

MAXIMA AND MINIMA VALUES OF A FUNCTION OF TWO
INDEPENDENT VARIABLES.

227. DEFINITION. ' A function ¢ (z, y) of two indepen-
dent variables is said to have a mazimum value when
¢ (x+h, y+k) is less than ¢ (z, y) for all values of 4 and k.
positive or negative, comprised between zero and certain
finite limits however small. The function is said to have a
minimum value when ¢ (z +}1 y + k) is greater than ¢ (2, y)
for all such values of %z and

228. To investigate the condz'tz'(ms that a function of two
independent variables may have a mazimum or minimum
value.

Let u=¢ (z, y),
=¢(x+6h y+6k);
then, by Art. 226,
du du

¢ (x+h, y+k)—u+h +k +R

d' v d d*
where R=— {71’ >+ hk +k’ }
2 ay’
Now, if 2 Zx +k§u be not zero, by taking h and k suf-

ficiently small, we can always make R less than A -~ du =T k Z;,

and hence the sagn of ¢ (x+h y+k)—¢(x y)will depend on
that of h + k d , and will therefore change by changing

that of 2 a.nd k; 1t is impossible then that ¢ (z, y) can have
a maximum or minimum value unless

du
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If M=0 cccerieriiirirnircrconennnnn (3),

du dw .
both 7 and & vanish.

From equa.tions (2)-we deduce
5’1 U d d—U U.— au when (3) is satisfied,
d'u aM d V dM c e
& =V.7@-+M. Fy_—v’ rm when {3) is satisfied,

d’u av aM
da:dy_V d.z:+M E:c—_V —— when (3) is satisfied,

d’u aM dau M C .
Wx =U. Z +M T U. rn when (3) is satisfied.

But dd'Zy dd p always; hence, when (3) is satisfied,
d'u dM dM
(Zoas dy) UV a3y

du  du d
If then 4, B, C denote the values of & ddy’ and P
when (3) is satisfied, we have

AC=B" ureeeieeevereren ().

Now suppose that from M =0, we find y in terms of %,
say y = (z), and substitute in »; we thus make w a function

of z only. On this hypothesis
du _ (du du\ dy
= (dx) + (dy) g
dy
=U.M+V. de, by (2),

A =0, since M =0 by hypothesis.
Hence, this substitution of 4 (x) for y has reduced s ¥

. u . . o o ’
& constant, since — vanishes without our assigning any part
cular value to .
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therefore 2@—-y)=ay(y—2a);
therefore 2(x—y) (@ +ay+y)=ay(y—=):
either then z=y,
or 22" + 3y + 2y* = 0.
The latter leads to an impossible result ; the former gives
. .
r=y = 73 .
2,
Also Z_;:'f =2+ 2?"?8 ’
d’u =1
] dzwdy
du_ 24 24°
7? ,'l/’ ’
therefore %g}: - ( df: ::, >’ is positive when « and y have

the assigned values, and d_?u is positive ; hence u is then a
minimum.
" 2 Let w=coszcosa+sinzsinacos(y—p),

Z—;=—-sinzcosa+cosa:sinacos y-A8),

%‘=_sinasin:csin (y—A8).

Hence g’—‘ vanishes when y= 8, and then % becomes
sin (a — z), and vanishes when 2 =a,

Also :%:::—coszcosa—sinzsinacos (y-8),

%:—coswsinasin@/—ﬁ),

$=;—sinasinzcos (y—B).
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The first expression becomes — 1, the second becomes 0,
and the third becomes — sin®a, when the a.ssxgned values of

dudu (du
« and y are substituted. Hence - & dy ( T dy is positive,
and v is a maximum..
3. Suppose u=¢>"" (ax + by"),
' du
-di— 2z (@ — az* — by®) €,

du
=2y (b= o= by) .

Here %= 0, and% =0, give as one pair of values z=0,
y=0. And these values make
du du d'u
&% gm0 a2

therefore » has then a minimum value.

Another pair of values is given by

x=0,
and b—ax’—by" =0,
that is, x=0, g.nd y==+1
With these values we have
d's _ L du du_ 24
d—w,-—2(a—-b)e, M—-o, dy,— 4be™.

Hence, if @ is less than 4, we have a maximum va.lue of w,
and if a is greater than b, we have nelther a maximum nor
a minimum,

There is only one other solution, namely, that found by
combining :
y=0, and ¢ —aa’—by*=0;

therefore y=0,and z=4+1.
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Here we should find that if @ is less than b, there is
neither a maximum nor a minimum, and if @ is greater than
b, there is a maximum value of u.

If in this example a =b, we arrive at the anomalous case
considered in Art. 235.

4. Let u=sgin« +sin y + cos (z + y),
Z——g=qosw—sin (®+1),

du

&= cos ¥ — sin (z + y).

du du .
If o and & vanish, we must have

cos = cos y =sin (z + y).

These equations admit of numerous solutions. For ex-
ample,

if €08 & = COS 7/,
we have =y, as one solution.
Hence we have cosz=sin 2z

=2sinzcosz;

therefore, either cos =0, or sinz=3%.

If we take the first, and put z=y= g, we have neither

& maximum nor a minimum ; if we put

3r
T=y= ';,
we obtain a minimum.
If we take sin 2 = §, and put
™
(c.-:y:—e-,

we obtain a maximum value for .
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5. To find a point such that the sum of the straight lines
joining it with the angular points of a given triangle shall be
a minimum, ' :

Let ABC be the given triangle; let BC=a, (4=},
AB=c. Take any point P
and draw PM perpendicular
to AB; let AM=x, PM=y.
Also let AP=wu, BP=v,
CP=w; the angle APM=0,

BPM=¢, CPM=1. P
Then w'=2+3, :
v'=(c—2)"+3", A/ M B

w'= (bcos 4 —z)*+ (bsin 4 —y)%
For a minimum value of ¥ + v 4+ w we must have

oo de o o,
and - %+%+%~;=0 ......... peeraenanens (2).
Now Z—Z=$=sin0, |
c‘%:"éﬁ%——w:‘mfl’»
%fg:cosﬂ,
'(‘%=%=cos ¢
%=_§si_ng:1/_cos\,’

Hence, from (1) and (2), .
sin 6 =sin ¢ + sin v,
cos f = — cos ¢ — cos Y.
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than a+e¢. Therefore in passing from B to any adjacent
point either inside or outside the triangle the sum of the dis-
tances is tncreased; and therefore at the point B the sumis
a minimum.
. The values of % and g_v_ take the form g
B; and this is the reason that the solution failed to indicate
the point B. We have already remarked in Art. 234 that a
maximum or minimum value may exist corresponding to
such indeterminate values of the differential coefficients.

at the point

6. Find the maximum and minimum value of

(ho+ky—a) b+ ky=b)

1+2*+y°
Let u denote the expression, and let » denote
1+2*+y';
then u=v"'(hz+ky-a) hxz+ky—D);

du _h(2hz+2ky —a—b) 2z (hz+ky —a) (ke +ky—b)
dx v v !
du _k(2hx+2ky—a—0) 2y (hx+ky—a) (hx+ky--b)
dy v o :
Pui j—: =0, and %%0; thus we deduce

z_Y_
;;--];-—TSUPPQSG.

Substitute 7 for « and 7k for y in g-:=o or % =0; we

shall obtain after reduction the following quadratic equation
inr:

?(R+E) (a+0) +2r B+ 5 —ab) — (a+8)=0;

thus the values of + are possible, and one is positive and the
other is negative, -
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17.

18.

19.

20.

21.

23.

EXAMPLES OF MAXIMA AND MINIMA.

a+brtcy . . _b
Shew that Tt 19 is a maximum when z= >
c
y=_.
Shew that aer**try has neither & maximum nor a mini-

mum.

Find the minimum value of =+ y+ 2, subject to the
condition

8IK

+2 4o,
y z :
Result. When %:—% =;%:=Va-|—‘/b +4e.

Find the minimum value of 2%4%z" subject to the same
condition as in the preceding Example.

Result. When };_a_:=%y=1;_z =p+qg+r

Having given the three sides of a triangle, find a point
within it, such that, if perpendiculars be drawn from
it to the sides, their continued product shall be a
maximum. Shew that straight lines joining this point
with the corners of the given triangle will divide it
into three equal triangles.

Find the maximum value of xyz subject to the con-
dition
& v 2
atpta=t
abe
. Result. 3—'V3.
Determine a point within a triangle, such that the sum
of the squares on the distances from the three sides is
a minimum.
Result. If p, ¢, r, be the perpendiculars on the sides
- a, b, c, respectively, then

a b ¢ a+b+c
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CHAPTER XVL

NAXIMA AND MINIMA VALUES OF A FUNCTION OF SEVERAL
' VARIABLES,

936. LET u= ¢ (x, ¥, 2) be a function of three independent
variables, of which we require the maxima and minima values.
By an investigation similar to that in Art. 224,

dp+hy+kz+)—¢ (29 2)

du ,du ,du

"dm"'k +ld
BRdu B d’u B du d*u d*u d'a
tewtigti Ny e mat g

+R;

where R is a function involving powers and products of &, k,
of the third degree, which _may be expressed for abbrevia-
tion by

1(,d d d)?

B {’%*"d“y* il
v denoting ¢ (z + Ok, y+ 6k, z+01).
. If we make &, %, | small enough, the sign of

d@+h y+k z2+)—P (2, 2)

will in general depend upon that of the terms involving only
the first powers of 4, k, ; hence, to ensure a maximum or
minimum, we must have .

du d du
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Therefore, from (7), (8), and (9),

and thus, from eqﬁation (3),

Al
= —
=’
= Mm
y—u'—b"
_Mn
==
r m? n?

=0.

u’—a’+u’—b’+u’—d‘

259

This equation is a quadratic in %% from which two values
of u* can be determined, one of which will be a maximum
and the other & minimum. It is obvious that a maximum
and a minimum value of %* must exist, for #, ¥, #, cannot all
vanish simultaneously, and no one of them can be greater than
unity; hence %' must lie between the limits 0 and a*+b*+ ¢%

4. Find the values of z, y, 2, when z'y7’ is a maximum
or minimum, subject to the condition

@’z +2by* + #'=c".

We have, putting u for z'y2’,

Also
Therefore

42y’ Dz + 2" Dy + 2a'yzDz =0,

z Y z

a*zDz + 3by* Dy +22°Dz = 0.
4 +Aa'z =0,
T

1

1 s
;T =0

82
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Multiply the first of these equations by «, the second hy
23_-'/, and the third by 2, and add ; then

o A {02+ 2by + 2 =0

17
therefore A=— 3
12¢* ct 3c*
Bt = =— S
Hence as'=—, by w F=1re

5. To find the maximum and minimum value of #* when
r=(z—a)+{y—-B)+ (-}
the variables and constants being connected by the equations

& ¥ 2

Ftpta= ceconceses (1),
le+my+nz=p...cccunna.. eecennenneia(D)y
la+mMBARY=Decererieniiniininianianens (3)
a_B _v

BB gt e (4).

[The student who is acquainted with Geometry of Three
Dimensions will see that (1) is the equation to an ellipsoid,
and (2) is the equation to a plane; a, B, ¢ are the co-ordinates
of the centre of the curve of intersection of the plane and the
ellipsoid, and r is the radius vector drawn from the centre
of this curve to any point of the curve.]

Since 7* is to be a maximum or minimum, we have

(®—a) D+ (y—B) Dy+ (2—q) Dz=0......... (5)
also from (1) and (2)
D.
“’a,x+”%/+z—i,)f=o ..................... ©),

Dz +mDy+ BDZ2=0 eerureeeeneenenannnn (7).
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15. If r*=2'+y*+2° where
ax® + by ¥ c2* + 2a'yz 4 2622 + 20Ty =1,
and - ° lz+my+nz=0,
find the maximam and minimum values of #*,

Result. They are determined by the equation

(-3 (BB e-D)
~ 2mnd (a— %) - anty (e~ %)~ atmet (e-3)
4 2mnb'c' + 2ndd o'+ Hma'b'— Ta™ — m'B" — n'c" =0
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CHAPTER XVII.

ELIMINATION OF CONSTANTS AND FUNCTIONS.

241. WE may make use of differentiation in order to
eliminate from an equation involving variables and constants
one or more of the constants. For example, let

Y=B)+ (@ =)~ =0 cerrerrerrenene (1).
Differentiate three times, giving
(y-—b)%{-w-a:O ...................... (2),
0%y (N
=855+ (Z) +1=0 rrrrrnn(3),
dy . .0y dy_
-85 +8E =0 ).

From ‘,these four equations we may deduce an equation
free from the three constants : we have

A, _e~a

de y-b’
dy__(@—a)+@-b__ ¢
e =0 G-
dydy

dzds®  3c*(x—a)

Hence 1+ (g—z)’} °Y_3 g—i (%)'= 0eerennee veen(8).
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245. Not only constants may be eliminated, but functioms.
Suppose, for example,

- g=singz;
then :11_1 =Ccos &
=N(1-9);
2
therefore o+ (%) ~1=0.

Hence the function sin 2 has been eliminated.

Again, let

y=tan(e+y);
therefore % = {1+ tan® (2 + )} {1 + _Z_Z}
=(1+y (1 + %) .

Hence tan (z+y) has been eliminated.

. In these examples given functions have been eliminated: °
we proceed to cases in which wunknows functions are elimis
nated.

246. Suppose z=¢ ‘f) , where ¢ denotes some futiction

the form of which is not given, and which is therefore called
an arbitrary function. The variables  and y are supposed
independent. .

Put Z=¢; then
y
z=¢(f,
-0 =10
dz .. dt T .
3_,7=¢ @) 337=-;-¢ ®;

ds  dz
therefore z -ty F 0.
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5. If y=asinz+bcosa, then
d'y
do?

6. Ehmmate the exponentials from
xy=aéc +be”.
d

3,
 Result. w(‘%u y—ay =0,

+y0

7. Eliminate the constants from
¥ +bt=a.
d'y dy dy
Result. ‘”-'/dx**“(dx) g
8. Eliminate the constants and exponentials from
ae’ +beV = f& +ge™.

e {533} -2

9. If (@+y) (c+ loga:)=a:e; then

IQ

dy
a’yg——.'/’ (@+y)e
10. Eliminate @ and b from

y=7aw-cos (ﬂlogw-i-b).

dy

d?
Result. «* y+2wda;+2-'/=

da*
11. Eliminate the constants from the equation
1=aa’ + 2bzy + cy”.

Result. d‘y(y wil"z)+3x(dy)_

dz* dzx dax?
12 If—-—-——f(y——),shewthat
P L)

&ty g=



13.

14.
15.

16.

17.

18.

19.

20.

EXAMPLES OF ELIMINATION. .27
If logz = ¢ (ay + bx) + Y (ay — bz), then

oS-k

If 2=¢"¢ (x+y), then 7o — = =—>

-~

_ . . dz _ dz
Ifz—¢(e'smy),thensmya§—cosyd-;.

dz d;
If a—-w+f(z)£:—-0, then

d’z (dz)' d’z dzdz dz (dz)’_ 0
Z) =

B\G oy mayt

If.z——“f(y_m), then

X —mz,
dz dz
2 — +(y— 5—=0.
(o= me) 224 g =n0) G-
Eliminate the arbitrary functions from
&= a¢ (az +by) +y¥ (az +by)-

d’z d’z | ,.d%
'— wdea —_— ’— =
Result. ady, 2abd’z:dy+b_dx’ 0.
Eliminate the arbitrary and exponential ﬁ_inctions from
u=e"F(z+y)+e™f(z—y).
' d'u du  d'
Result, ﬂ—ﬂ“"'?nd—yﬁ'd—y,.

Eliminate the circular and logarithmic functions from

(1) ye=sinlogz, (2) y=logsina
dy
da

Reslts. () @98 +2% 1y=0, (2) j%/+(%)+1=o.
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1
21. If z_=%.+¢(5+logy), then

s ds el

22. Eliminate the functions from y =af () + ¢ (2).
Result. The same as in Example 1¢

23, If ¢+ ma+ny=f{(c—a)*+ (y—b)'+ (¢ — )"}, then

{y—b—n(z—c)} %— {#—a—-m(z—c)} g’—z,=n(z—a) —m(y-b

24 If z2=2a"(ax+by) + (¥ +a") +¥ (¥ —2),

then L% L% _1ds 1ds_ta b
' dz* y'dy' Pz ydy = y°

25. If z=¢ {@+f(y)}, then
s do_ds s
dedy de dy do’
26. Eliminate the arbitrary functions from
e=f ) z T y') - X (=)

Result.(w'd—z—y Z;,)z+(z wﬁi y%)(xi—i—yg—-;);

27. futy+e=2a'f{z(u—y), «(y—2)}, then

=0.

d du d
s gt WG +Huty) g =y +e.

28, If u=¢{F(y‘—zz), f(@-%,y-'—z)}, then

du du
@+%&+&&_a



29.

30.

31,

32
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If u=ayz. F{f,(@*+y' +2°), f,(ay+az+yz)}, then
du du d
-ag+E-g +E@-9g

=u(y—z+z—z+w—y).

z Y z
Elimina.te. 2 from the equations
b 3) v @)
L Y@y -d@ Y
Result. 2¢ (z, y) = o Ty .

e
Eliminate the arbitrary functions from

1
z=a:"f(‘£)+y—..¢($).
: d’z d*z d’z dz dz
Result. :c’—l,+2zy—w+y’d—,+w%+yt—z!—l=n’z.

Shew how to eliminate the n arbitrary functions from
2=¢, (%) + 2, %) ...... +a", (35,:) .
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CHAPTER XVIIL

TANGENT AND NORMAL TO A PLANE CURVE.

257. DEFINTTION. Let P, @, be two points on a curve,
and suppose & straight line drawn through them; the limit-
ing position of -this straight line, a8 @ moves along the carve
and approaches indefinitely near to P, is called the fangent
to the curve at the point P.

V] )

A
[7) T x G hod

To find the equation to the tangent &t a given point of
a curve.

Let @, y, be the co-ordinates of the given point P,

x+ Az, y 4+ Ay, the co-ordinates of another point @ on the
curve.

Then &, 3, being current co-ordinates, we have for the
equation to the straight line PQ,

’ +A_ 3 7
Y= ha—a @
. ’ Ay 4
that is, y-—y:E(w—w).

Now let Q approach indefinitely near to P; the limit of
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Ay . dy . .
Az B 2 and the equation to. the tangent at P is

, dy .,
Yy —-yv=d‘-—€(w —-w).

258. DErFINITION. The normal to a curve at any point is
a straight line drawn through that point at right angles to
the tangent at that point. '

To find the equation to the mormal at any point of a curve.

Since the equation to the tangent at the point (2, g) is

’ d ’ A
y-y=3 @-a),
the equation to the normal at the same point is

y—y=_al:;(‘”'—‘w)7
' dz

supposing the axes rectangular.

9259. Let the tangent and normal at the point P meet the
axis of # at the points 7'and & respectively ; draw the ordi-
nate PM; then

. MT is called the subtangent,
M@ is called the subnormal,

Now 2 = the tangent of PTi
.
= d——x- v
. do
therefore .MT=5_]I- =y
das
).
Also Jp = tangent of GPM = tangent of PTx
-Y.
=%
‘herefore NG = y % .
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Hence, by Art. 262, the equation to the tangent at the
point (z, ) is

(¥'—y) (A4y+ Bz + D) + (¢ — «) (Cz+ By + E) =\,
which reduces by means of the given equation to
Y (4y+ Bz + D)+ (Cx+ By + E) + Dy + Ex+ F=0.

Example (2). Suppose the equation to the curve to be
y=ad

dy a 5 3_/

¢’

therefore
, ¢t

ﬁ“

and the equation to the tangent becomes
y’—y=%’ (@ — ).

The subtangent MT = g:; =¢, and is therefore constant in
dx
this curve which is called the logarsthmic curve.
Example (3). The equation to the logarithmic spiral is

tan“i =rklog V(& +2%).

oy i)

Hence -x“+?_ iy
dy _katy,
therefore a z—Fy H

and the equation to the tangent is

: ’ -’D'l"l/
¥y=¥=z= ky(x a:)
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Exzample (4). Suppose that the equation ¢ (z,%)=0, or
u =0, can be put in the form

UtV FVt oeeeee +v,+9,=0,

where v, v, ,, ««e... are homogeneous functions of the degree
nn—1,.... respectively ; hence

du _dv, d,v,,_l :
To=de t e e ,

" du _dv, dv,
F dy+ 2 Foereernnn s

and the equation to the tangent is
. , dv, . dv,_ »
- y)(dy R )+(:c x)( +—‘+ )

But by the property of homo feneous functions (see
Example 3 at the end of Chapter VIIL

ooooooooooooooooooooo

Hence the equation to the tangent becomes

dv, , dv, , dv, dv,,_1
(dy+dy ...... )""”(dx Tt )
=nv,+(n—1)v,_,+(n—2)v._,+ ...... ,
or, since Vot Vpy+Vpqgeee+9,+9,=0,
dv,, Jv,,_ ’ dvn dvn-x
y(dy+ dyl ...... )+a> (7&:_-'.75 eeseee )

+0,  + 20, ,+...+(n—1)v, +nv,=0..
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2. In the curve 3*=(z—a)’ (z—c), shew that the tangent
is parallel to the axis of  at the point for which
2c+a '
3

3. In the curve a’y’=aqa’ (5:+ v), the tangent at the origin is
inclined at an angle of 135° to the axis of .

4. In the curve &’ (z + y) =a’ (x—y), the equation to the
tangent at the origin is y =a. '

5. Inthe curve 2 4 y¥ = of find the length of the perpen-
dicular from the origin on the tangent at (z, y); alo
find the length of that part of the tangent which is
intercepted between the two axes.

Results. (1) Y(azy); (e

6. Ifz,,y,, be the parts of the axes of # and y intercepted
by the tangent at the point (z, y) to the curve

2 2
(2)* + (%)§= 1, then 2t + %=1,

7. Shew that all the curves represented by the equation

)

(a) * (b) =%

different values being assigned to 'n, touch each other
at the point (a, ).

8. In the curve y"=a"", express the equation to the
tangent in its simplest form ; and determine the value
. of n when the area included between the tangent and

the co-ordinate axes is constant.

9. If the normal to the curve 2% + ¥ = g}, make an angle ¢
with the axis of z, shew that its equation is '

7y c08 ¢ — x 5in ¢ = @ cos 2¢,















‘RECTILINEAR ASYMPTOTES. 293
Also B is the limit of y — uz; but u= the limit of Z—Z;
therefore tn general B =the limit of y—% . Hence the
equation to the tangent to the curve at the point (z, y),
which is e

¥ -y=g(@-a),
becomes, when z and y are indefinitely increased,
Yy =ps +8B;

that is, the equation to the asymptote found according to the

first definition is the same as the equation found according to
the second definition.

272. We say in the last Article that in general the limit
dy ‘

of y — px = the limit ofy—(—h;

x. Suppose, for example, that
the equation to a curve is

a

y=Aa;+B+5,

therefore E=A+£+g
z x ' 2

Hence = the limit of g =4, and

a
y—px=DB+ 2"
dy _ a
A.ISO %—A—?,
thereforel y—@w=B+gi".
dx @

Here y — j—%x and y — pux have the same limit, namely B,

But suppose y=Ax+B+a—'t%13.

Here, as before, p=A.
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274. The following method will furnish the rectilinesr
asymptotes with great readiness in many cases. Suppose
the equation to a curve, F'(z, y) =0, to be such that F(z,y)
is the sum of different homogeneous functions of z and y,%0
that the equation may be put in the form

2 (L) +a%y () +ex () + =0 e ()

x
where 7, p, ¢, are arranged in descending order of magnitude.

For example, every rational integral algebraical equation
between  and y can be put in this form. From (1) we have

¢ (%) + 729 (0 +omx (§)+ Y S

Now.in finding an asymptote we must first by Art. 271
ascertain the limit of % when z and y are infinite. If we
call that limit p, and suppose it to be finite, we have from (3)

$ (W) =0.

Let p, be a value of u obtained from this equation; we

have next to find the limit of y—px. Put y—pz=4
then from (2)

. But, by Art. 92,
8 (1 +E) =9 ) + 2 (1 +2)

B . 6
. =24 (n+3):
since ¢ () =0.
Thus (3) becomes

B¢'(m+e§) +w—,..l,,—_1-‘\[l'(/.b,+§)+...=0. ........ ().





















10.

11

12.
13.

14.
15.

16.

42 = (a+80) (& + ).
and 2=-2 .

Result. y= +("/3 34/3) 8

(z+a)y'=(y+0) "
Result. z+a= 0y+b 0, y=xz+b—a.
(y—29) (' —2) —a(y—2)' +4a’ (@ +y) =a’
Eesult. y=x,y+z=2?a,y—2z=‘—;.

¥ (@—3)" + 0 (@—3) - Bay — a* = 0.
Resull. y=x+3 (11 413).
@ (2 - a) — 2y (5" — o) = 3oy + . |
Result. 2y=2, y+a—a=0, y+x+a=0.
@ (z—y)'~a' (2 +3) = 0.
Result. x=+%a, y=xz+ay2
G2 @ ~d)=a |
- 3y’a:+4w'+ay+a:cy 6az’ + 20z — by + ¢ =0.

If a curve of the third degree be referred to two as
totes as axes, shew that its equation will be of the form

wy (ax+by+c) +a'z+by+c'=0, :
and that the equation to the third asymptote will be
ax+by+¢=0.
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CHAPTER XX.

TANGENTS AND ASYMPTOTES OF CURVES REFERRED TO
POLAR CO-ORDINATES.

278. Ir we have the equation to a curve expressed in
terms of « and y, we may transform it to one between polar
co-ordinates by assuming z=1rcos @ and y=1sin6. ﬁuﬁ
r becomes a function of 6, and the equation to a curve in polar
co-ordinates takes the form » =y (6), or F (r, ) =0. In this
case the curve is called a polar curve or spiral; r is called the
radius vector and 6 the vectorial angle.

The angle (y) which the tangent to a curve makes with the
axis of z is given by the equation

tany =32 (Ant, 251).
Hence, by Art. 201,

sin0§—2+rcos€
tan Y=

cosad—;-rsino

279. Expression for the angle included between the radius
vector at-any-point of a curve, and the tangent to the curve at
that point. '

Let P be a point in a curve, the polar co-ordinates of which
are r and 6, S being the pole.
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Let Q be another point, the co-ordinates of which are
r+ Ar, and 6 + A6.

Draw PL perpendicular to SQ, then
PL = rsin A6, )
LQ=r+Ar—rcosAf;

rsin A0
therefore tan LQP = ”m .

Let Q move along the curve to P; the limiting position
of QP is by definition the tangent to the curve at P; let this
be PT. The limit of the angle L QP will be the angle SPT';

call this angle ¢, then

tan ¢ = the limit of —— 2249

r+ Ar — r cos A¢
when Af and Ar are indefinitely diminished.

rsin A9
Now rsinAfd Af
7+ Ar —rcos AG 2rsin’-'l;—0 N
a6 Thae
Tho limit of S22 s 1.

The limit of 27 is denoted by 3.

. o A8 . Ad
28111—2- sm-§- Ad
_ The limit ofT, that is, of—Aa—s'm?, is zero.
2
dé
Therefore tang=r_r.

T.D.C X
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h280. The result of the last Article may also be obtained
thus:

dr

dé

cosed—;-—-r sin 6

PS8z = 0; therefore

+ 7 cos 8
, (Art. 278),

sin 6
tan PTx =

~sin0:§—§+rcos¢9
- —tané
cosf =, —rginf
tan §PT= dé =+ % by reduction
. dr dr
tan 6 (sm 6 70 708 0)

1+ .
cosOd—e-‘rsinﬂ

281. To find the polar equation to the tangent to a curv.

<

Let SP=r, PSxz=_0, be the polar co-ordinates of the point
of contact.
Let SQ=+, QSx=40', be the polar co-ordinates of a point
@ in the tangent line. From the triangle SPQ, we have,
putting SPQ=¢,
7 _sin SQP _sin (-6 +¢)
¥ sinSPQ sin ¢
= gin (6 — &) cot ¢ + cos (8 — &').

df
But ta.n¢=r$:;

therefore =; g—;sin @—80)+cos(f—0)..........[(1).

r
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This result may be written,

a '
rd—orsm(0—0)=r’ ....... reerernenns (2).
If we put ;=u, and rl": o/, then
1dr du
TP do dd
Hence, dividing both sides of (1) by r, we obtain
“u'=ucos(f— -—d—usin 0-0),
or u'=wucos (6 —6) + sm (G

282. To find the polar equation to the normal at any point
of a curve. '

Let SP=r, PSx=0,
SN=+, NSz=6,

N being any point in the normal; then

SP _sin SNP _ sin (0,_ 9 _|_"§"_ ¢) .
8N~ snSPN sin ('n' _ ¢) ’

=gin (6'— 6) tan ¢ + cos (6' — 6)

=sin (¢ — 6) td—e-i-cos( 0'—0).

therefore ;

This may be written
élercos (60— 9)—rd0,
nd may be transformed into
' . 240 . o
u'=wucos (0 —6)—u Zp 5o @' 6).
X2
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283. The polar equations in Arts. 281 and 282, may also
be derived from the rectangular equations to the tangent
and normal of Arts. 257 and 258, by transforming these to

polar co-ordinates, using the value of % given in Art. 278,

284. From 8 draw SY perpendicular to the tangent PT,
then

S
X
. rtan SPT
SY=rsm SPT:mm.

Hence, if SY = p, we have

S borser-d ok ()
=yt (Z—Z):lf u=}_.

285. From S-draw ST at right angles to the radius vector
SP, then ST is called the polar subtangent; its value is

rtan SPT, that is fj—g.

286. Since an asymptote is a tangent which remains at
a finite distance from the origin when the point of contact
moves off to an infinite distance, if a polar curve has an
asymptote, SP or » must be infinite while S7 remains finita
Hence to determine the asymptotes to a polar curve, we must
first find those values of 6, if any, which make r infinite









9.

10.

11

12.

13.

14,

15.
16.
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If r=a(1—cos@), then ¢=g, p=2asin'0 and the

'.2’

polar subtangent = 24 sin® g tan g.
: ]
If »* cos 20 = a’, shew that sin¢ =;,- .

If »*=a"cos 26, shew that ¢=g+20.

If r=a sec‘g, shew that the locus of ¥ is a parabola.

See the figure in Art. 284.

If r=a (1 + cos 0), shew that the locus of ¥ is deter-
]

mined by r=2a (cosg .

If ¥ =a" cos 26, sbev'v that the locus of Y is-determined
by r*=a' (cos%g) .

Shew that the curve » cos § =a cos 26 has an asymptote
having for its equation r cos§ =—a.

Shew that the curve (r — a)-sin 0 =>5 has an asymptote
having for its equation »sin 6 =b.

Determine the asymptotes of the curve  cos 20 =a.

Determine the asymptotes of the curve
r sin 40 = a sin 36.
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10.

11.

12.
13.

14,

POINTS OF INFLEXION. EXAMPLES.
If y(a'—b*) =z (z — a)* — 2b*, there is a point of inflexion
when 2 = 25‘!. Is there a point of inflexion when

z=a?
If 3‘—1:\/(“;“‘), there is a point of inflexion when
o= 3a
==
—a\t
If %=:—:+ (%—‘-1') , there is a point of inflexion when
z=a.
If ot = log 7, there is a pomt of inflexion when z=3$.
If aa®— :cy a’y=0, there is a point of inflexion when
z=4— «/3
Ird= (_x_) , there is a point of inflexion when
a 20 —x
z=2
=3

If a:y=a’logi—l:, there is a point of inflexion when

xz = ae’o
Find the point of inflexion on the curve,
U}
{y— 2 ¥J(a'2)}’ = daz. Result. z= (g) a

If y (a*+a’) =a’ (@ — ), there are three points of in-
flexion which lie on a straight.line,

6’
¥reg_q
If r=25.6" there is a point of inflexion when

r=b{—n(n+1)}%
If x=a (1 —cos¢), and y=a (nd +sin¢), there is s

point of inflexion when cos ¢ =— n’

there is a point of inflexion when r=-?1-; .
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CHAPTER XXIII. -

DIFFERENTIAL COEFFICIENTS OF AN ARC, AN AREA,
’ A VOLUME, AND A SURFACE.

807. THE length of the arc of a curve APQ, reckoned
from any fixed point 4 to the
point P, is evidently a func-
tion of the abscissa « of the
point P. This function is
often very difficult to deter-
mine, but its differential co-
efficient with respect to  can
always be assigned.

Let P, Q, be two poihts on a curve;
x, 9, the co-ordinates of P;
-+ Az, y+ Ay, the co-ordinates of Q.

Draw the ordinates PM, @N, and the tangent at P meet-
ing QN at R and Oz at T.

Let AP=s, AQ=2s+As.

We assume as an axiom, that the length As 18 greater than
the chord _PQ), and less than PR + RQ.

- The chord PQ = /{(Aa)* + (Ay),
PR = MN sec PTM = MN /(1 +tan’ PTH)

=Az J{1+ (g—-z '},
=y+Ay — (PM + Az tan PTHM)
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therefore As lies between #/{(Az)* + (Ay)’} and

mJ{u (@)’}+Ay—m%;

As .. Ay
therefore Az lies between ~/ {1 + ( ) } and

(@}2t-%

}, when Az is indefinitely

ﬂeMtofJ{l+(%)}+£—z—wh
dy\'| ,dy dy J{ tﬁ/'}
,\/{1+(E—x)}+a—z-‘—h,or 1+(dw>.

The limit of 15, by definition, Z: ; hence

e /(14 () o )

2
Square and multiply by (%) , then

1= (‘i—?)s + (%)’ ....................... @

If x and y are each functions of a third variable ¢ since
o &y
do _dt . dy_dt
F7An il A i
at dt

we have from (2), (——)’ ( dt) + (‘3{) .................. (3).

Now the limit of { ﬁ—z
diminished, is
{ fi_y_
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of an arc, namely, that the limit obtained is the same accord-
ing to whatever law the polygons be inscribed.

From this definition of the length of an arc it follows that
the ultimate ratio of the length of an indefinitely small arc to

its chord is one of equality, that is,
As
As Az
VT 3 —=1, ultimatel A
VB +Byr) * ¢{1+(gy} v
Az,
ds _ dy\*
therefore d—;—-'\/{l-l'(d—x')}.
309. SineesecantPTx=~/{l+(%).},
we have cos PTx = 1 Y =‘§,
{1+(a)}
and sin PTz = cos PTx tan PTx
_dedy_dy
ds dz~ ds

310. If z and y be expressed in terms of @ from the
equations
x=rcosf, y=rsinb,
wohave G _dedz
df  dz do

Vi@
=V{@)+ @}

cosa— —7rsin 6,

But a0

S %l &

. pdr .
=sm8zé+rcos8,



332 ' DIFFERENTIAL COEFFICIENT OF AN ARC.

ds dr *
therefore = «/ { il +r'}.
ds ds d0
We have shewn in Art. 279, that

ta.n¢=rio

where ¢ is the angle between the radius vector at the point
whose polar co-ordinates are =, 6, and the ta.ngent at that
point. Hence

R
sin¢= z’: = dr;rﬁ
Virr@) & ¢
. dr
Similarly cos¢=a——e.

These results may also be deduced immediately from the

figure in Art. 279; for sin¢ is the limiting value of 55 PL

PL As rsin AG As
that is, of As PQ or of s ._ZTQ The hmxt of

Ad d0 As .
ﬁl;.s_ls rds ; and the limit of -~ Yol is unity; hence

sin ¢ = 7—;%0 . Similarly the value of cos ¢ may be found.

811. The value of %, in At 310, may also be obtained
thus: ’ .

Let P, @, be points on a curve, and suppose

SP=n, PSxz=6,

8Q=r+Ar, Q@QSz=0+A0.

Draw PL perpendicular to 8@,
then

PL=1rsin A, s

u|
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EXAMPLES.

2
In the ellipse 32 = , /(%252 ) ; and if s =a sin &

%=a4(l—¢'sin’¢).

Inthepa.rabo]ay’ daz, J(a+a:

In the circle & d’ =9,

Find the differential coefficient of the arc of the curve
E—1)=¢+1.
ds e +1

let d—;—e,,_l.
ds a

In the curve at+yt=a}, &=

0

In the curve r=a (1+ cos6), ‘%=2acos§.

In the curve r=a’, ?0 =ry [1' + (log a)*}.
In the curve r*=a’cos 26, ds a’

dg=

_V@ +f')

In the curve r =aé, d

If e¥=cosz, z—x=cosa:.
8
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given curve be y=¢ (x), and the given point that whose
co-ordinates are x=a, y = ¢ (a), then we must have
ma +c = ¢ (a),
and m=¢’(a).
Hence m and ¢ are determined.
If y = ¢ (x) be the equation to a curve, then

y=¢ (@) +(@—a) ¢ (@ + “"‘_“) #@ .+ EL gy

is the equation toa curve which has a contact of the n® order
with the given curve at the point #=a. This may be easily
verified.

820. Circle of curvature. The general equation to a circle
involves three constants ; hence at any point of a curve a circle
may be found which has contact of the second order with the
curve at that point. We proceed to determine the radius and
the centre of such a circle.

DEFINITION. The circle of curvature at any point of a
curve is a circle which has at that point a contact of the
second order with the curve.

Let (X=a) '+ (Y =0y =p"cereererrencnnenee (1)
be the equation to a circle, so that a, b, are the co-ordinates
of its centre and p its radius. From (1) by differentiating
we have

X—at+(F-H2 =0

1+(d§)+(Y b)dX,

If this circle is the circle of curvature at the point (z, )
of a given curve, we must have

X=a
Y=y
dY d:/
E T QU @).

Y _dy
dX* =z
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Hence, from (2),
dy
z—a+ (y—0) as=°

1"‘(%)%(1/—6)%:0 ........ (4).
AN
Therefore . y—b=-— 1"‘d(;~r)
dyd"f ay | —— ).
T—a= d.—;’ 1;;5%)
st ]

Hence the values of g, , p, are found, and thus the position
and the radius of the circle of curvature at any point of a
curve are determined. .

In the value of p it will be proper in any particular
example to give to the radical in the numerator the same

gign as % has, so as to make p positive. Hence if y be
positive and the curve concave to the axis of 2 we should put
dy\"\ #
Ut (a&) }

ay
da*
From the first of equations (4) we see that the point (a, b)

is on the normal to the given curve at the point (z, y). .
The centre of the circle of curvature at any point is called
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for shortness the “centre of curvature.” Also the radius of
the circle of curvature is called the “radius of curvature.”

_If a straight line be drawn from any point of a curve in any
direction the portion of this straight line which is intercepted
by the circle of curvature at the assumed point is called the
chord of curvature at the assumed point in the assumed
direction. By the nature of a circle the length of the chord
of curvature will be obtained by multiplying the diameter of
the circle of curvature by the cosine of the angle between the
chord of curvature and the common normal to the curve and
the circle at the assumed point.

321. If p be the perpendicular from the origin on the
tangent at the point (z, ) of a curve, we have

V@Y
B @) -223 2

e

dp _
therefore =

dy\ &'y
_[o+y )
= T .
{1 +(F)
A].SO, if 7’ =w’+y”
dr _ dy
‘ra; =+ mi.
From these values of Z—f‘ and %, and the value of p given
in Art. 320, we see that,
dp _1,dr
dz p' dx’
’&nd ) X P = r‘i’: .
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322. If z and y be each a function of a third yariable ¢,

we have
9 dyde_dzdy
dy dt dy _di d¢ di’ de
d—z-g, M——El_o
dt dt
Using these values, we deduce
da:ﬂ dy!! -
_ (Z) +(%)}
Py _dwdy
deé dt  de* dt

For example; if ¢=s the arc of the curve measured from
some fixed point, then

2 2 )
since by Art. 307 (‘;.—?) + (Z—i’) S @.
1_dyde_d'zdy ®).
ST do T s .
By differentiating (2) we obtain

ded’z dyd*

e T —— @.

Square (3) and (4), and add ; thus

-2+ ().

From (8), by means of (4), we may also deduce

Hence

0=

dy d*z
1 .E?g ds*
p dz T dy”

ds ds

823, If we put x=rcosf, and y=1rsin6, we have from
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dy dy ooy
Art. 201 the values of —% and —=. Substitute these value
in the expression for p in Art. 320, and we find

ey

- dr\* d*r°
1 dr 1du
If T=;, then z—é=—"}3—0, and
Zr_3 dis_1d
¢ v (3_0 udét”

Substitute these in the above value of p; then

@)}

sy )’
u (u+d0’>
This result may also be found thus: -
dr 1 du
ByArt.321 p=1'@=—;;,zl;c
Lo (%Y
By .AIt- 284 p’—u + (da) ’
: 1dp d’v\ du
therefore ~pds= (u + W) 7’
dp d'u
and Le—p (vt g)-
8 Qu
u'p (“+d0')

e

u'(u+33';‘) o
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dr d% ° d

de’ dg”’ " dg”
common point.

will be the same for both curves. at the

826. Since ; = —1—,+ Z;)

it follows from the last: Artlcle, that if two curves have con-
tact of the first order the value of p will be the same for both
curves at the common point. Also, since

dp .
dp do dr d’r
or = involves only 7 d0’ and 6’
do

it follows that if two curves have contact of the second ord;ar
the value of ‘—iﬂ must also be the same for both curves at

the common pomt

327. We may apply the. precedmg Article to establish the
equation proved in Art. 321 as follows.

If B be the radius vector of a point in a circle,
P the perpendicular on the tangent,
¢ the radius of the circle,
b the distance of the centre from the origin,
we have, from the properties of a circle,
| 2cP=R'+J—B,
dR

P’

If this circle be the circle of curvature at a point in a
curve having » for its radius vector and p for tEO perpen-
dicular on the tangent, we have by the last Article,

Differentiating, c= R

R=yr,
P=p,
dR dr

P~ 3’



therefore c=r%;
. - dr
that is, thendnndcnruhre:r;.

328. At a poiat where the radius of curvature is @ man-
mum or ¢ mimmum the cirde of curvature has contact of the
third order with the curve. -

| p @Y
Since P =ﬁ’—'—‘ ,
]
we have, when % =0,

(8-S ()

Ifin Art. 320 we differentiate the second of equations (2),

we have
dY d*'Y aY
3d—de+(Y—b)W=0.
2 dY Y
Hence Y __ dX dX3
ax* Y-b
d’y\* dy
3 dTa) e

= gl rat)
1+ ( da:)
by equations (3) and (5) of that Article. In order that the

circle of curvature may have contact of the third order with

~ the curve at the proposed point, we must have
TY_dy

ax* do*’
i B+ (4] o 2
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Let O be the centre of curvature corresponding to the
point P of a curve referred to polar co-ordinates. Let SY be
the perpendicular on the tangent at P. ’

0

S \ vz x
/
Let "8P=r, PO=p, SY=p,
80=1', p = perpendicular from § on PO.
From the triangle SOP we have

r*=p*+ 7’ — 2rp cos SPO
=p* +¢'—2rpsin SPY

= 1 — 20D cenenienseisnneteniians (0.

Also PiI=r—p i, ereresesensesenenes @).
dr

p=r CTp- ................................. cecsone (3)

From the given equation to the curve we can find p in terms
of r, and then between (1) and (2) we can eliminate 7, and
thus we have an equation between p’ and 7’ to determine the
locus of 0. Since PO is a tangent to the locus of O, p' 8
the perpendicular from the origin on the tangent to the
evolute at O.

In the figure the curve is drawn concave to the pole.
If the curve be convex to the pole % is negative (Art. 294),

and we should take p=— r 27 ; in this case we shall find i

dp
stéad of (1) the equation
ri=p'+ '+ 2pp.
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Thus in both cases we have
dr
r=p'+ 7 —2pr ——.
P -pr dp

333. Involute of a circle.

Let 8 be the centre of a circle, APQ a portion of the
involute, 0P = 0A the portion of the string unwound. Let
80 =a, OSA=¢, and let =, y be the co-ordinates of P,
the origin being at S, and S4 the direction of the axis of .

Then OP =a¢, .
= a cos ¢+ adsin ¢,

. y=asin ¢ —apcos .
Let AP =s, then

ds _ @— 2 él 2
5 @)+ @)} Ao
= ag.
Hence, as we shall see in the Integral Calculus,
2
-,
EXAMPLES.
1. In the curve
y=5 (€ +e7),

the ordinate at any point is a mean proportional between
the radius of curvature there and at the lowest point. -
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10.

CONTACT. CURVATURE. EXAMPLES..
In the curve :
y=a'— 42" - 184,
the radius of curvature at the origin = .

In the curve .
y = a4+ 52* + 6z,

the radius of curvature at the origin =22.506...
Find at what point the radius of curvature is infinite.

If ¢ (@, y) = 0 be the equation to a curve, then

(@@

P (@) X dqu (dqb)' 73
dy) dz~ 2% dy d:cdy dy

Find the parabola whose axis is parallel to that of y

which has the closest possible contact with the curve

y =z’; at the point where z=a.

' a\’ a a
- Beult. (w-3)=2 (v-9)
Ifr=a(1—cosd), p=%asin g
a(5—4cosf)t
9—6cosf °
If the curves f(z, y) =0 and ¢ (z, y) = 0 touch, shewthat
at the point of contact

af d _df d¢ _

Ifr=a(2cos 0—1); p=

Apply the last result to find if the straight line
L
+ 5—1=0
touches the curve
al+yt— (@ + 8t =0
When the angle between the radius vector and the per-

pendicular on the tangent has a maximum or minimum
value, shew that pp =1~
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' = K 3
91, Ify+as =0, thenp= CH¥)T
. ay
2 ’ 2 2
22. Shew that the circle (:c - i}) + (y - 3—;) = % and the
curve 4z + 4y = y/a have contact of the third order at
the point x=y=g.

23. Ifr=asec’g, find p. Result. p=2asec’g.

24. Find the two parabolas which, having their axes parallel
to the co-ordinate axes respectively, have a contact of
the second order with the circle &+ y"= 5a", at the
point 2 =a, y=2a.

o (3-3) = (2-4), (o= -2 (20 ).

" 25. In the curve ‘:;—/ =% (¢ +e¢ °), shew that the co-ordinates

of the centre of curvature are

Y =2y, X=w—yJ("§—l),

and find the equation to the evolute.

26. Find the equation to the evolute of the ellipse, and the
whole length of the evolute.

Results. (az)}+ (by)1=(a*—%Y; 4 %_% :

27. If r=jf(p) be the polar equation to a curve, shew that
the equation to the locus of the foot of the peq:endicular
drawn from the pole on the tangent is p'= ]%’7 Find

2,
and shew that itis a circle

the 1 A
e locus when p*: 2a—7"

E—
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Let F'(z, y, a) =0 be the equation which gives the series
of curves by varying-continuously the quantity @. Then the
locus of the ultimate intersections is found by eliminating a

between
F(2, 9, @) =0cceurrrerrencenennanne. (1),
and F' (2,9, 0) =0ueceeeeenannnnnnnnnnn. 2).

Suppose from (2) we obtain @ in terms of = and y, say
a= ¢ (x, y); then if we substitute in (1) we have

Flz,y, ¢ (@, 1)} =0 .cueuu.. RN )8

which is therefore the equation to the locus of the ultimate
intersections. Now if for any assigned value of a the equa-
tions (1) and (2) %we possible values to x and y, then the
curve represented by (1) when a has this a.smgned value, will
meet the curve represented by (3).

The value of &y for the curve (1) is found by the equation

dx
dF (z, y, a) dF (z, y, a) dy
=2 F TRERE -l ).

The value of Z—Z for the curve (3) is found by the equation
dF (e, 9,4)  dF (5,9, 9) &y
dax S dy o do

M {Zi gj :Z} ............ (5).

But %g only differs from :i—ig in having' ¢ (=, y) in the
place of a; hence by (2) we have at the point where (1)

and (3) meet, d_g =0. Thus (5) becomes at that point
dF (z,y, ¢)  dF (z,y, $)dy _
o + ay = (| SO (6).

Sinde at the point of intersection of (1) and (3) we have

‘a=¢ (=, ), equation (6) gives for Z‘Z at that point the same
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from which it follows by (6) that

Hence we have to eliminate a, b, ¢, A and p from equations
(1), (2), (7) and (8) ; the result is the equation to the envelop

required.

Example. A straight line moves so that the length inter-
cepted between the co-ordinate axes is constant : required the
envelop of the moving straight line.

Let the equation to the straight line be

2,9 |
T 9),
80 that a'+ b =a constant =&, say ............... (10).
From (9) gi Da+%/§Db=0,
from (100  aDa+ bDb=0;
thus (gg+)«z) Da + ( ,+)\b) Db =0,
therefore £,+M=0, and ‘Z,+ A =0...cccenrmnnnen (11);

multiply the first of these equations by a and the second by
b and add thus ,

i V(e =
a+ b+x(a +5) =0,
that is, 14+ =0, therefore A =— I? .
Thén from (11) '
a'=k'z, and *=~y.
Therefore by (9)
x
Jwn T (k )
er . yi =ik
.. This equation determines the envelop.
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29.

30.

3l

32.

ENVELOPS. EXAMPLES.

Perpendiculars are drawn from the pole of an equi-
angular spiral on the tangents to the curve: find the
envelop of the circles described on these perpendiculars
as diameters.

Result. A similar equiangular spiral.

From every point of a parabola as centre a circle is
described with a radius exceeding the focal distance
of the point by a constant quantity : find the envelop
of the circles.

Result. (z+c+a){y* +(z—a)*—c'}=0; where cis
the constant quantity. ¢

Find the envelop of the straight lines obtained by vary-
ing @ in the equation axsec @ — by cosec 0= a* — b".

Result. (az)t+ (by)t = (a*— 891

From a fizxed point A4 in the circumference of a circle
any chord AP is drawn and bisected at &, and on
PH as diameter a circle is described: find the locus

of the ultimate intersections of the system of circles
described according to this law.

Result. a* (2 + y') = (22* +2y* — 3az)*;
where o +y* = 2az is the equation to the given circle.
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CHAPTER XXVL
TRACING OF CURVES.

340. IN this Chapter we shall give some examples of
tracing curves from their equations.
o* (2* — 4a
Ta’_’) of ooooooooooooooooo (l)-
First find the value of g‘z : taking the logarithms of both

sides of the equation and differentiating, we have

Example (1). Let z'=

1dy 1, = __= .
ydz z T—4a o—a’
dy | @A/ (x'—4a) x ®
therefore ik @ =) {5 pon 4a"_a:"—a"}"" 2).
Next find the asymptotes: since
(-4
9 _ z*
y= 1_2 »
z

x
3a*
=;|;a: 1—27,,..}
3a*
=+ m—%...} ................................. (3)-
Hence y= =
.nd y=—x

are asymptotes.
T.D.C. BB
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When « is very large the terms included in the &ec, of
2
equation (5) will be very small compared with %:—: . Hence

comparin (4) and (5) we see that corresponding to the same
abscissa the ordinate of the curve is less than that of the
asymptote, and therefore the curve lies below the asymptote
as represented in the figure..

341. Example (2). Suppose

_x(z—a) (x—2a) )
.'l'———m;—— ............. vene(l) 5
2dy 1, 1 1 1
therefore 3—/%—5+w—a z—2a z+3a’
dy_1(e@—o)(-2a)if1 1 1 __ 1
de 21 x4 3a zx x—a x—2a a:+3a}

Also from (1) we have R vereeee (2):
y=iw(1—'—”\‘(l ——23)&(14.:'1‘2)4

x/ x "4
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If the three series be multiplied together we have

2
y=iz(l—3;a+l2l—3, n.)
' .
| | =4+ (x—3a+l2l—: ) ......... (3).
Hence y=x—3a
and : y=—x+3a
are asymptotes.
Also from (1) - x=-3a

is an asymptote.

From (1) and (2) we have the following results, confining
ourselves to the positive values of 3.

When z=0, y=0, %:oo.
From z =0 to z=a, ¥ is possible.

‘Wheén z=a, y=0,
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Again, reject y*; thus
ay’x— =0,
3

x

therefore : =—,
a

Hence y' varies as 2°; the rejected term varies as '
a.nd the terms retained vary as .
', and consequently we obtain I

an approximate branch. ,
The branch to the left of the \ o —
axis of y is that given by =—az, 0\ —Z

and the cusp to the right of the

axis of y is that given by 3" ==

In this example, 3* may be found
in terms of  and the whole curve traced.

345. We may observe that in the examples of the pre-
" ceding Articles, the supposition which was found inadmissible
near the origin, will be admissible for points at a very great
distance from the origin. Thus if

y'+ay'z—a'=0,

when « and y are mdeﬁmte]y g'reat, ay’:c may be neglected
in comparison with y* and 2‘; and y*=a' ory=1=, w

an approximation at points remote from the origin. If we
find the asymptotes by Art. 277, we shall have

3/'——-i(w-%);

to which y=+z

_may be considered an a,pprommatlon when x a.nd y are inde-
finitely great.

346. Required the nature of the curve
. ¥+ xy’ + ax’y — b2’ =0
near the origin.
Assume ax’y —bx’=0
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measured in the ordinary way round from OA be 3—;+;

the corresponding value of r is

a a
cos ?1"-4-3) T or —ay2(V3+1);
k3 ( 2 4 81n1—2
hence we take OP =a 4/2 (¥/3+1) measuring it along Q0

produced. In this way, as 6 changes from ?%r
obtain the portion ECFA of the curve.

If we suppose 6 negative, or positive and greater than
?w, we shall only obtain repetitions of the branches already
ound.

to 3w, we

349. A very common mistake in drawing polar curvesis
made with respect to the asymptotes. For example, if r is
infinite when 6 =0, it is assumed that the initial line is an
asymptote. This involves a double error, for in the first
place it does not follow that because » is infinite there s an
asymptote ; and secondly, if there be an asymptote it may be
parallel to the initial line instead of coinciding with it.

For example, the polar equation to the parabola from the
vertex is

__4acosf
~ sin* C ‘ -

Here when =0, ris 0, but the curve has no asymptote.

In the curve

when @ =0, » is infinite; there is an asymptote, but it does
not coincide with the initial line; it will be found to be
parallel to it and at a distance 3a from it.

350. Trace the curve
=2 sin @
=g -
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dr _a(fcosf—siné)
do ¢ ’
O sin @

Ocos@ —sinf’

Here

tan ¢ =

As r is never infinite there is no asymptote ; r is positive
from 6=0 to 0=, negative from @=a to 6=2m, and
80 on.

‘When §=0, tan ¢ assumes the form %; on examination il
will be found infinite. ,
The curve begins at A, crossing the initial line at right

angles, since there tan ¢ is infinite : as 6 changes from 0 to 7
the portion 4ABO is traced out; as & changes from 7 to 27
the portion ODEFO is traced out, and so on. The curve
forms an infinite number of loops, each smaller than the pre-
ceding and all passing through O.

If we ascribe negative values to 6 we obtain the dotted
part lying below the straight line 0A.

851. Trace the curve
o

T*‘H—e.
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In this case the curve begins at the pole O and makes

an infinite number of revolutions round it; » can never be-
come 80 great as @, to which value however it continually
approaches. Hence r=a is the equation to an asymptotic
circle, to which the curve continually approaches as @ in-
creases without limit,

If we give to 6 negative values, we have a branch similar
to that obtained from positive values of 6, It is represented
in the figure by the dotted portion.

352. We shall now give the equations and the figures of
a few curves which frequently occur in problems.

The Logarithmic Curve.

The equation to this curve is A
x
y=be; 7
or, which is an equivalent form,
y=>ba". /
The curve extends to infinity

" both in the positive and negative
directions of the axis of . As z
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i8 increased numerically in the negative direction, y tends
to the limit zero, so that the axis of  is an asymptote.

353. The Catenary.
The equation to this curve is

c ,= -z
y=5 (@ +e)

It is the curve in which a flexible string
would hang if suspended from two points, o =
as is shewn in works on Statics,
354. The Logarithmic Spiral.
The equation to this curve is
0
r = bee,

or r = bal.

Taking the first form we have

tan¢=rg;0=c.

Since ¢ is thus constant the curve is also called the
equiangular spiral.

L) )

% A
ER S
N

The dotted patt arises from negative values of 6.
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355. The Spiral of Archimedes.

»=al.

'856. The Cycloid.

s

C

o

AP B D x

The cycloid is traced out by a fixed point in the circum-
ference of a circle as the circle rolls along a straight line.

Let Ax be the straight line along which the circle rolls;

M the fixed point in the circumference of the circle
BMC which traces out the cycloid ;

A the point in the straight line Az with which M
was originally in contact ;

O the centre of the circle :
AP=2, MP=y, MOB=¢, OB=a.

The arc MB=a¢, and by the nature of the curve it is
equal to 4B

therefore x=a¢—PB=ap —asing,
Y =a—acose.
If we eliminate ¢ we have

ac=acos"a;y—»\/(2ay—y').
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Since the arc AM = af, it follows that
MP=arc AM,
From (1) we have '

La—x
Y =acos IT+ 4/(2032—37’) ...-........(2),
dy 20— 2
therefore == (—_x_) .
If s denote the arc AP, we have

a2V @}V ).
therefore 8=/(8ax),

as will appear from the Integral Calculus.

The normal to the curve at P is parallel to MD, as we
may see from Art. 357 or from an independent investigation.
By the property of the circle it follows that

MD=2acosg.

If we investigate the value of the radius of curvature at P
we shall find it to be twice MD, that is,

4a cosg or 2 y/(4a’ ~ 2az).

2,
359, The evolute of the cycloid is an equal cycloid.

E

» .
A £

4 ] A

c B
For it appears by Art. 358 that the radius of curvature at
a point M of a cycloid is twice MN. Hence if we produce
MN to O, making NO = MN, the point O is the centre of
curvature corresponding to the point M, Draw EIB and
make /B =2q ; draw BC parallel to ED} the circle described
on NC as a diameter will pass through O, ‘
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The equations
z=a (1 —mcosf),
y=a(0+msiné),

will represent a prolate cycloid, a common cycloid, or a
curtate cycloid, according as m is less than unity, equal to
unity, or greater than unity. See Art. 358.

EXAMPLES.
Trace the following curves :
P=ax' -2 .2 y=d-2"
¥ (x—a)=(z+a) 2’ 4. oy =ad (2"

¥ (x— 4a) = ax (z— 3a). 6. ('+3°)’= 40z,
4’ (2a—=z) =2®. (The cissoid.)

o= ("—y") b+y)" (The conchoid.) Transfer the
origin to the point (0, —b) and then change to polar
co-ordinates and we have for the equation

© N v

r=>bcosecd + a.
9. (&+y)"=a’(@*—2"). (Thelemniscata.)

10. r=afsiné. 11. r=a (0 +siné).
12. rsin @=a cos® 6. 13. r=Ilogsiné.
14. #*cos @ =a’sin® 30. 15. 7’ cos @=a’sin® 6.

16. 7 (§—sin @) =u (f+siné).
17. r=a(1—cond). (The cardioide.)
18. r0=a. (The hyperbolic spiral.)

19. Find the equations to the tangent and normal at the
point P in the epicycloid. See the Figure to Art. 360.
Shew that the normal at P passes through B.

20. Trace the curve determined by the equations

z=a(l-cos¢), y=ad;
this curve is called the companion to the cycloid.
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, ¥, 2, all functions of a variable ¢, and for shortness put

& Dy, & ps, WDy, %_p,,
we have .
Du= (Z—i’) Da+ (fl’—‘;’) Dy+ (%‘g) Dz v (1),

In works on the Differential Calculus, which use differentials,
we find an equation similar to the above occurring at an
early period, namely,

du= () do+ (g—;’) dy+ () do o (2.

The introduction and use of this equation form the principal
difference between such works and one which, like the pre-
sent, uses only differential coefficients, To establish (2) the
following method 1s adopted.

Let u=¢ (v, 2),
and u+Au=¢ (x+ Az, y+ Ay, z+A2),
therefore

Au=¢ (z+Az, y+Ay, 2 +A2) — ¢ (7, 3, 2)
_¢(z+Az, y+Ay, 2+ 482)—(z, y+Ay, z-l-Az)Az
Az
+¢(x) .'/"'Ay, z"'AAz;—(ﬁ(z, Y z+Az) Ay

12t ld-d@ad sy ... (3).

If Az, Ay, and Az diminish without limit, the quantity
¢(z+ Az, y+ Ay, 2+ A2) — d(x, y+ Ay, 2+ Az2)
e

a.sprba.ches the limit (Z_w) . If then we put for this quantity

(sz +a, we know that o diminishes without limit when
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26.

27.

28.

29.

30.

31.

32.

MISCELLANEOUS EXAMPLES,

In any curve the equation %"‘ 1=0 holds at a point

of inflexion, 6 and ¢ being the angles which the prime
radius and tangent make respectively with the radius
vector.

Is Z—; necessarily of the form g at a multiple point ?

Find the singular points in the curves
4(Z+y)=1+3y4,
and ¥ —2xy + 26— 2*=0.
Find the nature of the curve
y+1=20—2"+ (2—a)t
at the point z = 2.
Determine the point of inflexion in the curve
- y=a"—92"+ 24z —16.

From the pole of the curve r=4a’ Slei'pendicula.rs are
drawn upon the tangent; through the points of inter-
section of the perpendiculars with the tangents, straight
lines are drawn parallel to the radii vectores: shew
that the equation to the locus of the. ultimate intersec-

tions of all such straight lines is r = 4 cos a a®*%, where
cot a=log a.

If radii vectores of an equiangular spiral be diameters of
a series of circles, the locus of the ultimate intersections
of the circles will be a similar spiral.
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CHAPTER XXVIII.
MISCELLANEOUS PROPOSITIONS.

369. IN the present v-after we shall investigate various
propositions which afford valuable illustrations of the prin-
ciples of the subject and lead to important results,

870. The following formula is due to Jacobi:

a1t (1-a)? wa1.8.5...(2n—1)sinnd
=(-1
T——(_ ) n ’

where 2=cos 8. This we shall now demonstrate.

. Put y for 1—2?: we have

du ntl ar 1 d
dw‘ dxn—x dw.'/' == (2n+ 1) P -'fy"‘
*hus by Art. 80
. -2
. TV -nanen Il .
o dMy 4 a*yy 4
AIBO _dwT—_ d$ H
thus by Art. 80
a nt+d ar a4 da*? 3 a* -4
g™ &y - )

P dg e

From (1) and (2) by eliminating dT:ﬂy-—-! we obtain
=1, a~}

@n+1-n L dryd -(an+1)y—’— ~en+)nz 2. ).

T.D.C. DD
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Again, in the general expression (2) let f(z) = F*(x), and
g=0; then
¥ (x) =F*(a+k) — F*(a),

and assuming that F*" (x) does not vanish between the
values a@ and a + 4, we have

R=M,{F‘(a+h) '_F-(a)}.

3
In (2) put ¢=0; thus
L ) (}_; o { FladB) —f(a) } F-f—',—————?(ﬁ;z)”) .

Mémoires de U Académie... de Montpellier, Vol. 5, 1861...1863.

374. Expand 4/(1 — % .sin™z in powers of z.
Assume /(1 —4%) .sin"e=4,+ Az + A"+ A2 +...

Differentiate both sides with respect to z; thus
zsinz ‘

i

=4, +24x+...+rd a7+ ...,

thatis  1-—2 (4, + A+ 4g"+..)
=4, +24z+...+rdx+ ... ;
therefore 1—2'—x(4,+A4x+ 42" +...)
=4, +24g+...+rd a7 +..) (1 =27
Equate the coefficients of &”; thus if r be greater than 2
we have
-4, ,=r+1)4,-@r-1)4,,,

therefore (r—2)4,,=(r+1)4,,.

Also we can see by expanding 4/(1 —2*) and sin™z and
forming their product that

1
4,=1, 4,=0, -Aa="§;












410 MISCELLANEOUS PROPOSITIONS.

378. If in the identity at the top of page 120 we put
dt= h? we shall obtain

fe+ V@~ + fo— V(@ - B .

. <8 n(n—38) ., .
_2{ i St 2.—---},
hence we infer that _
— O — (= R))"
$)= BV G BNHfood@ R @)

and this may be verified by shewing that this value of ¢ ()
satisfies equation (5). _

By putting @ =% we find that 2= 2}"7_,

Assume %:cos 6, which is of course allowable so long as

« is not numerically greater than A.
Then  {w+ /(2" — B)}*= A" {cos 6 + ¥ —1 sin 6}

= k" {cos nf + ¥ — 1 sinnd} ;

thus #(0) =5

that is so long as z lies between — % and % we have
& _ _
$ (#) = gr cosn (cos ‘%’) =kcosn (cos ’%’) .

379. The last result may also be obtained from (4). For
put ¢ (z) =2z ; then (4) gives

nvw—m——vw~w,"

n _1 -dz

therefore ~TE=S TN &
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11. Find the envelop of the axis of a parabola having a
focal chord given in position and magnitude.

Result. 2%+ y=c}; the origin being the middle
point of the given chord, and one of the axes coinciding
with that chord.

12. A system of ellipses is described such that each ellipse
touches two rectangular axes, to which its axes are
parallel, and that the rectangle under the axes of
the ellipse is constant: shew that each ellipse is
touched by two rectangular hyperbolas, the rectangle
under the transverse axes of which is equal to the
rectangle under the axes of any one of the ellipses.

13. A, B, are the centres of two equal circles, and 4P, B(Q,
are two radii which are always perpendicular to each
other: find the curve which is always touched by the
right line P@, and explain the result when

AB*=24P"

14, Trace the following curves:

& —zy'+ay’=0,

Y —Tyx* + 62°— a’=0,

Y+ —aa =0,

a (P + 70y + Tzy’ + ) - 2"y =0,

zy' +ax’—a*=0,

Y (x—2a)—2"+a’=0,

Y —az’y—bxy’ +° =0,

Y —baz’y +2° =0,

y=2 1+ @0V
¥ (@+2z)=2"(a—a),
y=x€e",

y=e7y(@'-1),

)
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19. In Art. 275, if p =n—1, we have approximately when
« and y are very large ;

y_ (AN 2 (),
jw___,,,l-i-(;), where A——'ﬁ'

shew that if ¢g=n —2, we have by continuing the
approximation

AN B C
%=IL,+(;) +;+:;*+“.
W) ¢4
where .B = ¢,, (“l) 6 ¢n (/"1) >
X() F ¥ )+ )+ 5 87 )+ 58" W)} B
A7) ‘

20. If (2, B) be a point of the curve ¢ (z, y) =0 through
which pass n tangents, shew that the locus of all the
tangents at that point is expressed by

fe-az+0-B7f 46 f)=o

21. Shew that the theorem of Art. 91 willhold even if ¢'(x)
is infinite when z=a or when #=>0. Give a geo-
metrical illustration.

22. Shew that the theorem of Art. 98 will hold even if F(x)
or f’(x) is infinite when #=a or when z=a + k.

23. Shew that the formula (3) of Art. 373 will hold provided
p +1is not less than g¢.

24. Obtain from (3) of Art. 373 the result
plg2™ 6% (1—6)* 2 A* F** (a + 6h) '
1.3.5...(2g+1)|n
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